СибГУТИ. Алгебра и геометрия. Зачет, экзамен. Билет №9
Состав работы
|
|
|
|
Работа представляет собой zip архив с файлами (распаковать онлайн), которые открываются в программах:
- Microsoft Word
Описание
1. Кривые второго порядка. Канонические уравнения. Основные свойства.
2. Решить матричное уравнение , где
.
3. Даны векторы
Найти .
4. Даны координаты вершин пирамиды
A(1; 1; –1), B(0; –2; 1), C(5; 1; 6), D(–1; –2; 1).
Найти координаты точки пересечения плоскости ABC с высотой пирамиды, опущенной из вершины D на эту плоскость.
5. Привести к каноническому виду уравнение кривой второго порядка, построить кривую, найти фокусное расстояние и эксцентриситет
.
______________
Уважаемый студент, дистанционного обучения,
Оценена Ваша работа по предмету: Алгебра и геометрия
Вид работы: Зачет
Оценка:Зачет
Дата оценки: 24.04.2017
Рецензия:Уважаемый ,
Ваша работа зачтена.
Агульник Владимир Игоревич
2. Решить матричное уравнение , где
.
3. Даны векторы
Найти .
4. Даны координаты вершин пирамиды
A(1; 1; –1), B(0; –2; 1), C(5; 1; 6), D(–1; –2; 1).
Найти координаты точки пересечения плоскости ABC с высотой пирамиды, опущенной из вершины D на эту плоскость.
5. Привести к каноническому виду уравнение кривой второго порядка, построить кривую, найти фокусное расстояние и эксцентриситет
.
______________
Уважаемый студент, дистанционного обучения,
Оценена Ваша работа по предмету: Алгебра и геометрия
Вид работы: Зачет
Оценка:Зачет
Дата оценки: 24.04.2017
Рецензия:Уважаемый ,
Ваша работа зачтена.
Агульник Владимир Игоревич
Дополнительная информация
2017
Похожие материалы
Зачет. Билет №9, алгебра и геометрия
Uiktor
: 17 декабря 2015
Билет № 9
1. Кривые второго порядка. Канонические уравнения. Основные свойства.
2. Решить матричное уравнение , где
. A=(-2 1) B=(2 4) C=(-9 3)
(-1 1) (1 -1) (-1 7)
3. Даны векторы
a=(2;-3;1) b=(-3;1;2) c=(1;2;3)
найти
(a+b)*(b*c)
4. Даны координаты вершин пирамиды
A(1; 1; –1), B(0; –2; 1), C(5; 1; 6), D(–1; –2; 1).
Найти координаты точки пересечения плоскости ABC с высотой пирамиды, опущенной из вершины D на эту плоскость.
5. Привести к каноническом
100 руб.
Алгебра и геометрия, экзамен, билет №9, семестр 1, зачет
Е2
: 9 июня 2018
Билет № 9
Задание 1. Кривые второго порядка. Канонические уравнения. Основные свойства.
Задание 2. Решить матричное уравнение , где
Задание 3. Даны векторы
Задание 4. Даны координаты вершин пирамиды
A(1; 1; –1), B(0; –2; 1), C(5; 1; 6), D(–1; –2; 1).
Задание 5. Привести к каноническому виду уравнение кривой второго порядка, построить кривую, найти фокусное расстояние и эксцентриситет
400 руб.
Экзамен «Алгебра и геометрия». Билет №9
Екатерина179
: 23 апреля 2017
Билет № 9
1. Кривые второго порядка. Канонические уравнения. Основные свойства.
2. Решить матричное уравнение , где...
3. Даны векторы (рис)
Найти .
4. Даны координаты вершин пирамиды
A(1; 1; –1), B(0; –2; 1), C(5; 1; 6), D(–1; –2; 1).
Найти координаты точки пересечения плоскости ABC с высотой пирамиды, опущенной из вершины D на эту плоскость.
5. Привести к каноническому виду уравнение кривой второго порядка, построить кривую, найти фокусное расстояние и эксцентриситет (рис)
150 руб.
Алгебра и геометрия. Экзамен БИЛЕТ № 9
Галина7
: 21 мая 2015
1. Кривые второго порядка. Канонические уравнения. Основные свойства.
2. Решить матричное уравнение , где
.
Обозначим:
A = -21-11
B = 241-1
C = -93-17
3. Даны векторы
Найти .
a ̅+b ̅=(2-3; -3+1;1+2)=(-1;-2;3)
b ̅×c ̅=|(i&j&k@-3&1&2@1&2&3)|=i(3-4)-j(-9-2)+k(-6-1)=(-1;11;-7)
a ̅×b ̅=|(i&j&k@-1&-2&3@-1&11&-1)|
4. Даны координаты вершин пирамиды
A(1; 1; –1), B(0; –2; 1), C(5; 1; 6), D(–1; –2; 1).
Найти координаты точки пересечения плоскости ABC с высотой пирамиды, опущенной из верши
70 руб.
Экзамен по предмету "Алгебра и Геометрия". Билет №9
ashley
: 24 февраля 2014
БИЛЕТ № 9
1. Матричные уравнения. Решение систем с помощью обратной матрицы.
2. Взаимное расположение двух плоскостей.
3. Найти точку пресечения прямой, отсекающей на осях координат отрезки 2 и -3 и прямой, проходящей через точки (-1;1) и (0;3).
4. Привести уравнение кривой к простейшему виду, построить
5. Найти модуль вектора , если .
250 руб.
Алгебра и геометрия. 1 семестр. Зачёт. Билет №9.
58197
: 30 января 2012
Билет №9.
1. Матричные уравнения. Решение систем с помощью обратной матрицы.
2. Взаимное расположение двух плоскостей.
3. Найти точку пресечения прямой, отсекающей на осях координат отрезки 2 и -3 и прямой, проходящей через точки (-1;1) и (0;3).
4. Привести уравнение кривой к простейшему виду, построить
5. Найти модуль вектора .
10 руб.
СибГУТИ. Алгебра и геометрия
Дмитрий103
: 10 июня 2017
ВАРИАНТ №4
1. Решить систему уравнений методом Крамера и методом Гаусса
2. Для данной матрицы найти обратную матрицу
3. Даны векторы
Найти:
a) угол между векторами и ;
b) проекцию вектора на вектор ;
c) векторное произведение ;
d) площадь треугольника, построенного на векторах .
4. Даны координаты вершин треугольника
a) составить уравнение стороны АВ
b) составить уравнение высоты АD
c) найти длину медианы ВЕ
d) найти точку пересечения высот треугольника АВС.
5. Даны
60 руб.
Алгебра и Геометрия СибГути
Екатерина179
: 23 апреля 2017
Задание 1. Решить систему линейных уравнений методом Крамера и методом Гаусса
2. Для данной матрицы найти обратную матрицу
3. Даны векторы
Найти:
a) угол между векторами и ;
b) проекцию вектора на вектор ;
c) векторное произведение ;
d) площадь треугольника, построенного на векторах
4. Даны координаты вершин треугольника А(-4;0); B(-2;2);C(2;2)
a) составить уравнение стороны АВ
b) составить уравнение высоты АD
c) найти длину медианы ВЕ
d) найти точку пересечения высот
100 руб.
Другие работы
Экзамен по дисциплине: Цифровая обработка сигналов. Билет №17
Amor
: 19 октября 2013
Билет No17
1. Синтез рекурсивного ЦФ с помощью билинейного преобразования.
2. Шумы ЦФ.
3. Задача.
Дано:
x(nT) = {1; 1; -1; -1; 1; 1; -1; -1}
Определить x(jkω1) с помощью БПФ.
300 руб.
Лабораторная работа №2 по дисциплине "Теория электрических цепей" Вариант 4
Khl
: 5 мая 2022
Цель работы
Исследование амплитудно-частотных характеристик фильтра нижних частот третьего порядка, реализованного на пассивных и активных RC-звеньях.
1. Теоретическое исследование
Осуществить синтез ARC-фильтра нижних частот в соответствии с исходными данными своего варианта (по последней цифре пароля).
А, дБ=3,0
Аmin, дБ=32
f2, кГц=20
f2, кГц=50
555 руб.
Особенность дознания по делам, по которым обязательно производство предварительного следствия
DocentMark
: 14 сентября 2013
ВВЕДЕНИЕ 3
1. ОБЩАЯ ХАРАКТЕРИСТИКА ДОЗНАНИЯ КАК ОДНОЙ
ИЗ ФОРМ ПРЕДВАРИТЕНЛЬНОГО РАССЛЕДОВАНИЯ 4
2. Дознание по делам, по которым
обязательно производство предварительного следствия 11
2.1. Дознание в Российской милиции
Бульдозер на базе трактора Т-330
bez_1985
: 5 октября 2014
Данное бульдозерное оборудование наиболее приближено к скреперному оборудованию. Производительность этой машины относительно высокая, конструкция не сложная, но вследствие неудобной компоновки, машина маломаневренна и громоздка. А также неустойчива, из-за смещения центра тяжести.
в даннойкурсовой работе представлен вариант выполнения рабочего оборудования бульдозера, решающий вышеописанные проблемы.
1Лист - Вид общий
2Лист - Рабочее оборудование
3Лист - Рабочее оборудование 3D
4Лист - Деталиров
2400 руб.