Лабораторная работа. Математика. Теория вероятностей и математическая статистика. Распределение показателей качества по количественному признаку. Анализ точности технологического процесса.

Состав работы

material.view.file_icon
material.view.file_icon Лаба 2 матан.pdf
material.view.file_icon Лаба 2(лабы 1 и 3 в методичке).xlsx
material.view.file_icon Лаба 2 матан.docx
Работа представляет собой rar архив с файлами (распаковать онлайн), которые открываются в программах:
  • Adobe Acrobat Reader
  • Microsoft Excel
  • Microsoft Word

Описание

1.1. Распределение показателей качества по количественному признаку.
1. Выполнить расчёты и построения в соответствии с примером 1.1. Чему равна вероятность того, что ёмкость случайно выбранной пластины пьезоэлемента меньше 11 пФ*10^3 ? Чему равна вероятность того, что ёмкость случайно выбранной пластины пьезоэлемента находится в интервале от 9 пФ*10^3 до 10 пФ*10^3?
2. Построить на одной диаграмме графики интегральных функций трёх нормальных распределений, имеющих параметры, приведённые в табл. 1.1.
3. Построить на одной диаграмме графики дифференциальных функций трёх нормальных распределений, имеющих параметры, приведённые в табл. 1.1.
4. Сделать выводы о влиянии параметров распределения на вид и положение графиков функций распределения.
Таблица 1.1 – параметры распределений.
No Вариант 2
 μ σ
1 2 2
2 2 4
3 1 4


1.2. Анализ точности технологического процесса.
1. Выполнить расчёты в соответствии с примером.
2. В технических условиях задан диаметр вала 80±0,4 мм. Установлено, что в производстве валов математическое ожидание диаметра равно 79,8 мм, среднее квадратичное отклонение – 0,18 мм. Найти вероятную долю дефектной продукции и коэффициент точности технологического процесса. Является ли процесс достаточно точным?
3. Как изменятся показатели точности технологического процесса, описанного в задании 2, если настроить математическое ожидание диаметра вала на середину поля допуска?
4. Как изменятся показатели точности технологического процесса, описанного в задании 2, если настроить оборудование так, чтобы СКО диаметра вала уменьшилось до 0,1 мм?

Дополнительная информация

Год сдачи - 2015.
Принял - Мещеряков П.С.
Оценка - работа зачтена.
Теория вероятностей и математическая статистика
Задание 1. Сколько 4-х буквенных слов можно составить из букв слова УКУС? Решение: Переставить буквы в слове можно 4! Способами. В слове 2 одинаковые буквы: У – две буквы. Если менять местами эти буквы в конкретной расстановке, то слова будут получаться одинаковые. Следовательно, общее число слов, составленных перестановкой букв из слова УКУС будет равно: Задание 2. В автопарке имеются автомобили трех марок, всех поровну. Автомобиль первой марки исправен с вероятностью 0,8, второй марки с
User Dirol340 : 11 декабря 2022
250 руб.
Теория вероятностей и математическая статистика
1. Используя метод максимального правдоподобия, оценить параметры и нормального распределения, если в результате n независимых испытаний случайная величина ξ приняла значения , ,... . Решить задачу с логарифмированием и без логарифмирования. 2. Методом максимального правдоподобия найдите оценку параметра θ, если плотность имеет вид
User viktoriya199000 : 16 мая 2022
50 руб.
Теория вероятностей и математическая статистика
Теория вероятностей и математическая статистика.
Задача 1. В 2014 г. выборочное обследование распределения населения города по среднедушевому доходу показало, что 40% обследованных в выборке имеют среднедушевой доход не более 20 тыс. руб. В каких пределах находится доля населения, имеющего такой среднедушевой доход, во всей генеральной совокупности, если объем генеральной совокупности составляет 1000000 единиц, выборка не превышает 10% объема генеральной совокупности и осуществляется по методу случайного бесповторного отбора, а доверительная
User IT-STUDHELP : 22 ноября 2021
600 руб.
Теория вероятностей и математическая статистика
Задача No1 (Текст 1) Вероятность соединения при телефонном вызове равна p. Какова вероятность, что соединение произойдёт только при k - ом вызове? Дано: p=0,7; k=5. Задача No2 (Текст 3) В одной урне K белых шаров и L чёрных шаров, а в другой – M белых и N чёрных. Из первой урны случайным образом вынимают P шаров и опускают во вторую урну. После этого из второй урны также случайно вынимают R шаров. Найти вероятность того, что все шары, вынутые из второй урны, белые. Дано: K=5; L=2; M=4; N=4; P=3
User svladislav987 : 9 ноября 2021
100 руб.
Теория вероятностей и математическая статистика
Вопрос 1. Термин «достоверное событие» используется для определения события... Варианты ответа: вероятность которого равна 1. дополнение к которому пусто. которое может произойти. вероятность которого равна 0. _______________________________________________________________________ Вопрос 2. Вероятность того, произойдет одно из двух противоположных событий равна... Варианты ответа: сумме вероятностей этих событий. произведению вероятностей этих событий . 0. 1. ___________________
User abuev : 7 сентября 2021
400 руб.
Теория вероятностей и математическая статистика
Задача 1. Текст 2. Вероятность появления поломок на каждой из k соединительных линий равна p. Какова вероятность того, что хотя бы две линии исправны? p = 0,8, k = 3. Задача 2. Текст 3. В одной урне K белых шаров и L чёрных шаров, а в другой – M белых и N чёрных. Из первой урны случайным образом вынимают P шаров и опускают во вторую урну. После этого из второй урны также случайно вынимают R шаров. Найти вероятность того, что все шары, вынутые из второй урны, белые. K = 5, L = 5, P = 2, M = 4, N
User GFox : 20 июля 2021
180 руб.
Развитие бэнкинга в арабских странах
Бытующая среди широкой публики трактовка исламской экономической доктрины в основном сводится к запрету на ссудный процент. Действительно, это – один из краеугольных камней экономической теории и практики ислама. Запрет на процент закреплен в самых сильных выражениях в Коране, где он приравнен к наиболее злостным грехам и осужден как прямой вызов Аллаху. Однако данный постулат не является изобретением магометанства. Ссужение денег ради прибыли осуждалось Аристотелем, Платоном, раннехристианской
User alfFRED : 29 августа 2013
10 руб.
Лабораторная работа №2 по дисциплине: Сетевые базы данных. Вариант №7
Тема 1: Выборка данных из объединенных таблиц Тема 2: Подзапросы 1. Напишите запрос, который вывел бы для каждого заказа его номер, стоимость и имя заказчика. Данные вывести для заказчиков, размещенных в SanJose и в Barcelona. 2. Напишите запрос, который выводит имена и города всех продавцов, у которых процент комиссионных больше, чем у Serresa, используя подзапрос. 3. Создайте представление на основе запроса из задания 1 лабораторной работы № 1. 4. Выведите последние два по алфавиту покупателя
User SibGOODy : 15 июля 2018
300 руб.
promo
Экзамен по дисциплине: Математический анализ. Билет № 5
БИЛЕТ № 5 1. Вычисление тройного интеграла в декартовой и цилиндрической системе координат. 2. Найти градиент функции в точке 3. Изменить порядок интегрирования. Область интегрирования изобразить на чертеже. . 4. Найти общее решение дифференциального уравнения . 5. Найти частное решение уравнения 6. Разложить функцию в ряд Фурье: , при 7. Найти область сходимости степенного ряда:
User Jack : 25 мая 2013
600 руб.
Экзамен по дисциплине: Математический анализ. Билет № 5 promo
Автокраны - сборник чертежей и проектов
Автокран (3 чертежа) Автокран KTA-40 (1 чертеж) Автокран Tadano GT-550E (1 чертеж + характеристики) Автокран КС-3577 (1 чертеж + характеристики) Автокран КС-35715 (1 чертеж) Автокран КС-45717К-2 (1 чертеж) Автокран КС-45719-1 Галичанин (2 чертежа + характеристики) Автокран КТА-28 (КрАЗ-65101) (1 чертеж) Автомобильный кран КС-5473 (1 чертеж) + дополнительно: Автокраны - описание отечественных автокранов (с рис. и схемами) Астахов А.И. Автомобильные краны. Учебник. 1969 Каталог автомобильных крано
User MagicT : 5 апреля 2010
150 руб.
Автокраны - сборник чертежей и проектов
up Наверх