Контрольная работа по дисциплине: Дискретная математика. Вариант №20
Состав работы
|
|
Работа представляет собой файл, который можно открыть в программе:
- Microsoft Word
Описание
Вариант No20
Исходные данные см на скрине.
Задание 1. Доказать равенства, используя определения и свойства операций над множествами. Проиллюстрировать при помощи диаграмм Эйлера–Венна.
Задание 2. Даны два конечных множества: A={a,b,c}, B={1,2,3,4}; бинарные отношения P1>=A×B, P2>=B^2. Изобразить P1,P2 графически. Найти P=(P2*P1 )^(–1). Выписать области определения и области значений всех трех отношений: P1,P2,P. Построить матрицу [P2], проверить с ее помощью, является ли отношение P2 рефлексивным, симметричным, антисимметричным, транзитивным.
Задание 3. Задано бинарное отношение P; найти его область определения и область значений. Проверить по определению, является ли отношение P рефлексивным, симметричным, антисимметричным, транзитивным.
Задание 4. Доказать утверждение методом математической индукции:
Задание 5. Бригада из восьми взломщиков одновременно выходит на грабеж трех разных магазинов. Сколькими способами они могут разделиться, если в каждой группе должно быть не менее 2 человек? Сколькими способами их после задержания могут рассадить по четырем одинаковым камерам (не менее чем по одному в каждую)?
Задание 6. Сколько существует положительных трехзначных чисел: а) делящихся на числа 9, 21 или 30? б) делящихся ровно на одно из этих трех чисел?
Задание 7. Найти коэффициенты при a=x^2*y^6*z^2, b=x^4*y*z, c=x^4*y^8 в разложении (5*x^2+2*y^2+3*z)^6.
Задание 8. Найти последовательность {an}, удовлетворяющую рекуррентному соотношению a(n+2)-3a(n+1)-28an=0 с начальными условиями a1=15, a2=17.
Задание 9. Орграф задан матрицей смежности. Необходимо:
а) нарисовать граф;
б) выделить компоненты сильной связности;
в) заменить все дуги ребрами и в полученном неориентированном графе найти эйлерову цепь (или цикл).
1 0 1 1 0 0
0 0 0 0 0 0
1 0 0 0 1 1
1 0 1 0 1 0
0 0 0 0 1 1
1 1 1 0 1 0
Задание 10. Взвешенный граф задан матрицей длин дуг. Нарисовать граф. Найти: а) остовное дерево минимального веса; б) кратчайшее расстояние от вершины v2 до остальных вершин графа, используя алгоритм Дейкстры.
Исходные данные см на скрине.
Задание 1. Доказать равенства, используя определения и свойства операций над множествами. Проиллюстрировать при помощи диаграмм Эйлера–Венна.
Задание 2. Даны два конечных множества: A={a,b,c}, B={1,2,3,4}; бинарные отношения P1>=A×B, P2>=B^2. Изобразить P1,P2 графически. Найти P=(P2*P1 )^(–1). Выписать области определения и области значений всех трех отношений: P1,P2,P. Построить матрицу [P2], проверить с ее помощью, является ли отношение P2 рефлексивным, симметричным, антисимметричным, транзитивным.
Задание 3. Задано бинарное отношение P; найти его область определения и область значений. Проверить по определению, является ли отношение P рефлексивным, симметричным, антисимметричным, транзитивным.
Задание 4. Доказать утверждение методом математической индукции:
Задание 5. Бригада из восьми взломщиков одновременно выходит на грабеж трех разных магазинов. Сколькими способами они могут разделиться, если в каждой группе должно быть не менее 2 человек? Сколькими способами их после задержания могут рассадить по четырем одинаковым камерам (не менее чем по одному в каждую)?
Задание 6. Сколько существует положительных трехзначных чисел: а) делящихся на числа 9, 21 или 30? б) делящихся ровно на одно из этих трех чисел?
Задание 7. Найти коэффициенты при a=x^2*y^6*z^2, b=x^4*y*z, c=x^4*y^8 в разложении (5*x^2+2*y^2+3*z)^6.
Задание 8. Найти последовательность {an}, удовлетворяющую рекуррентному соотношению a(n+2)-3a(n+1)-28an=0 с начальными условиями a1=15, a2=17.
Задание 9. Орграф задан матрицей смежности. Необходимо:
а) нарисовать граф;
б) выделить компоненты сильной связности;
в) заменить все дуги ребрами и в полученном неориентированном графе найти эйлерову цепь (или цикл).
1 0 1 1 0 0
0 0 0 0 0 0
1 0 0 0 1 1
1 0 1 0 1 0
0 0 0 0 1 1
1 1 1 0 1 0
Задание 10. Взвешенный граф задан матрицей длин дуг. Нарисовать граф. Найти: а) остовное дерево минимального веса; б) кратчайшее расстояние от вершины v2 до остальных вершин графа, используя алгоритм Дейкстры.
Дополнительная информация
Работа была зачтена со второго раза, все замечания исправлены (на сайте выложен конечный вариант с учетом замечаний преподавателя).
Дата сдачи: июнь 2017 г.
Преподаватель: Бах О.А.
Помогу с другим вариантом.
Выполняю работы на заказ по следующим специальностям:
МТС, АЭС, МРМ, ПОВТиАС, ПМ, ФиК и др.
E-mail: help-sibguti@yandex.ru
Дата сдачи: июнь 2017 г.
Преподаватель: Бах О.А.
Помогу с другим вариантом.
Выполняю работы на заказ по следующим специальностям:
МТС, АЭС, МРМ, ПОВТиАС, ПМ, ФиК и др.
E-mail: help-sibguti@yandex.ru
Похожие материалы
Контрольная работа по дисциплине: Дискретная математика. Вариант №20
IT-STUDHELP
: 7 октября 2023
Вариант No20
No1 Доказать равенства, используя свойства операций над множествами и определения операций. Проиллюстрировать при помощи диаграмм Эйлера-Венна. а) A\((AB)(AC)) = (A\B)\C б) (AB)(CB) = (AC)B.
No2 Даны два конечных множества: А={a,b,c}, B={1,2,3,4}; бинарные отношения P1 AB, P2 B2. Изобразить P1, P2 графически. Найти P = (P2P1)–1. Выписать области определения и области значений всех трех отношений: P1, P2, Р. Построить матрицу [P2], проверить с ее помощью, является ли отн
600 руб.
Контрольная работа по дисциплине: Дискретная математика. Вариант №20
SibGOODy
: 1 апреля 2018
Задание 1. Доказать равенства, используя определения и свойства операций над множествами. Проиллюстрировать при помощи диаграмм Эйлера–Венна.
Задание 2. Даны два конечных множества: A={a,b,c}, B={1,2,3,4}; бинарные отношения P1⊆A×B, P2⊆B^2. Изобразить P1,P2 графически. Найти P=(P2*P1 )^(–1). Выписать области определения и области значений всех трех отношений: P1,P2,P. Построить матрицу [P2 ], проверить с ее помощью, является ли отношение P2 рефлексивным, симметричным, антисимметричным, транзит
1200 руб.
Контрольная работа по дисциплине: Дискретная математика. Вариант №20.
Доцент
: 7 января 2015
Задача № 1.
Задано универсальное множество U и множества A, B, C, D. Найти результаты действий a) - д) и каждое действие проиллюстрировать с помощью диаграммы Эйлера-Венна.
U = { 1, 3, 5, 7, 9 } A = { 1, 3, 9 } B = { 5, 7, 9 } C = { 4, 5 } D = { 9 }
а) ; б) ; в) ; г) ; д) .
Задача № 2.
Ввести необходимые элементарные высказывания и записать логической формулой следующее предложение:
“Если студент не получил все зачёты или не сдал все экзамены, то он не получает стипендию”.
Задач
55 руб.
Контрольная работа по дисциплине: Дискретная математика
Максим400
: 4 февраля 2021
Контрольная работа
по дисциплине: Дискретная математика
Вариант 3
I. Задано универсальное множество U и множества A,B,C,D. Найти результаты действий а) – д) и каждое действие проиллюстрировать с помощью диаграммы Эйлера-Вейна.
II. Ввести необходимые элементарные высказывания и записать логической формулой следующие предложение.
«Если на небе светит солнце, и не идет дождь, то погода подходит для пикника»
III. Для булевой функции f (x,y,z) найти методом преобразования минимальную ДНФ. По таблиц
100 руб.
Контрольная работа по дисциплине: «Дискретная математика»
Мария114
: 24 мая 2017
1. Задано универсальное множество и множества Найти результаты действий a) - д) и каждое действие проиллюстрировать с помощью диаграммы Эйлера-Венна.
2. Ввести необходимые элементарные высказывания и записать логической формулой следующее предложение.
3. Для булевой функции найти методом преобразования минимальную ДНФ. По таблице истинности построить СКНФ. По минимальной ДНФ построить релейно-контактную схему.
4. Орграф задан своей матрицей смежности. Следует:
а) нарисовать орграф;
б) найти
100 руб.
Контрольная работа по дисциплине: "Дискретная математика"
Ivanych
: 19 марта 2017
Вариант №3
Задача №1
Задано универсальное множество U и множества A, B, C, D. Найти результаты действий а) -д) и каждое действие проиллюстрировать с помощью диаграмм Эйлера-Венна
Задача №2
Ввести необходимые элементарные высказывания и записать логической формулой следующее предложение: «Если на небе светит солнце, и не идет дождь, то погода подходит для пикника».
200 руб.
Контрольная работа по дисциплине: Дискретная математика
BuKToP89
: 31 марта 2016
Вариант: 2
I. Задано универсальное множество U и множества A, B, C, D. Найти результаты действий a) - д) и каждое действие проиллюстрировать с помощью диаграммы Эйлера-Венна.
II. Ввести необходимые элементарные высказывания и записать логической формулой следующее предложение.
“Если вопрос на экзамене сформулирован корректно, а студент не знает ответа, то экзаменатор недоволен”.
III. Для булевой функции найти методом преобразования минимальную ДНФ. По таблице истинности построить СКНФ. По миним
80 руб.
Контрольная работа по дисциплине: Дискретная математика
pvv1962
: 4 апреля 2015
I. Задано универсальное множество U и множества A,B,C,D. Найти результаты действий а) – д) и каждое действие проиллюстрировать с помощью диаграммы Эйлера-Вейна.
II. Ввести необходимые элементарные высказывания и записать логической формулой следующие предложение.
“Если на небе светит солнце, и не идет дождь, то погода подходит для пикника”
III. Для булевой функции f(x,y,z) найти методом преобразования минимальную
ДНФ. По таблице истинности построить СКНФ. По минимальной ДНФ
75 руб.
Другие работы
Термодинамика и теплопередача СамГУПС 2012 Задача 51 Вариант 3
Z24
: 15 ноября 2025
Трубопровод диаметром d1 = 150 мм, имеющий температуру поверхности t1 и степень черноты ε = 0,75, окружен цилиндрическим экраном диаметром d2, обе поверхности которого имеют степень черноты εэ. Определить потери тепла излучением на 1 м длины трубопровода при температуре окружающей среды t2 = 27ºC, приняв ее поглощательную способность равной единице. На сколько процентов будут больше указанные потери при тех же условиях для трубопровода без экрана?
180 руб.
Лабораторная работа №3 по дисциплине Схемотехника телекоммуникационных устройств. На тему Широкополосный усилитель с цепями коррекции.МТУСИ
DiKey
: 8 апреля 2023
Лабораторная работа №3 по дисциплине Схемотехника телекоммуникационных устройств. На тему Широкополосный усилитель с цепями коррекции.
Цель Работы
Исследование влияния корректирующих звеньев и ООС на частотные свойства и переходные характеристики резисторных каскадов.
Выводы
При введении коррекции увеличивается время установления импулься, но графики АЧХ и Переходной характеристики выравниваются. Уменьшается частота fвч, причем для эмиттерной коррекции это уменьшение более существенное
150 руб.
Задание №6. Вариант №24. Корпус
vermux1
: 24 марта 2018
Боголюбов С.. К. Индивидуальные задания по курсу черчения. Готовые чертежи.
Задание 6 вариант 24 корпус
Вычертить изображения контуров деталей и нанести размеры.
Выполнен в компасе 3D V13 чертеж корпус на формате А4.
Помогу с другими вариантами.Пишите в Л/С.
25 руб.
Реконструкция цеха по ремонту двигателей в условиях СПК им. Калинина Вешкаймского района Ульяновской области
Рики-Тики-Та
: 19 февраля 2017
СОДЕРЖАНИЕ
ВВЕДЕНИЕ
1 АНАЛИЗ ПРОИЗВОДСТВЕННОЙ ДЕЯТЕЛЬНОСТИ СПК ИМ. КАЛИНИНА
1.1 Сведения о предприятие, этапы его формирования
1.2 Организационная структура, размеры, специализация
1.3 Состав и структура МТП СПК им. Калинина
1.4 Характеристика ремонтной базы хозяйства
1.5 Цели и задачи дипломного проектирования
2 ОПРЕДЕЛЕНИЕ ОБЪЕМОВ РАБОТ ПО РЕМОНТУ ДВИГАТЕЛЕЙ
2.1 Расчет количества ремонтов двигателей
2.2 Расчет годовой трудоемкости
3 РЕКОНСТРУКЦИЯ ЦЕХАП ПО РЕМОНТУ ДВИГАТЕЛЕЙ
3.1 Диаг
825 руб.