Лабораторная работа №№1-5 по дисциплине: Теория информации. Вариант общий
Состав работы
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Работа представляет собой rar архив с файлами (распаковать онлайн), которые открываются в программах:
- Программа для просмотра текстовых файлов
- Microsoft Word
Описание
Лабораторная работа №1
ВЫЧИСЛЕНИЕ АНТРОПИИ ШЕНОНА
Цель работы: Экспериментальное изучение свойств энтропии Шеннона.
Среда программирования: любая с С-подобным языком программирования.
Результат: программа, тестовые примеры, отчет.
Задание:
1. Для выполнения данной лабораторной работы необходимо предварительно сгенерировать два файла. Каждый файл содержит последовательность символов, количество различных символов больше 2 (3,4 или 5). Объем файлов больше 10 Кб, формат txt.
Первый файл (назовем его F1) должен содержать последовательность символов с равномерным распределением, т.е. символы встречаются в последовательности равновероятно и независимо.
Второй файл (F2) содержит последовательность символов с неравновероятным распределением.
2. Составить программу, определяющую несколько оценок энтропии созданных текстовых файлов. Оценки энтропии необходимо вычислить по формуле Шеннона двумя способами, т.е. используя частоты отдельных символов и используя частоты пар символов. По желанию можно продолжить процесс вычисления оценок с использованием частот троек, четверок символов и т.д.
3. После тестирования программы необходимо заполнить таблицу для отчета и проанализировать полученные результаты.
Краткое описание алгоритмов программы
Результаты работы программы
Анализ и сравнение полученных результатов с теоретическими оценками
Лабораторная работа №2
ВЫЧИСЛЕНИЕ АНТРОПИИ ШЕНОНА
Цель работы: Экспериментальное изучение свойств энтропии Шеннона.
Среда программирования: любая с С-подобным языком программирования.
Результат: программа, тестовые примеры, отчет.
Задание:
1. Составить программу, определяющую несколько оценок энтропии текстового файла (размер не менее 10 Кб). Оценки энтропии необходимо вычислить по формуле Шеннона двумя способами, т.е. используя частоты отдельных символов и используя частоты пар символов. По желанию можно продолжить процесс вычисления оценок с использованием частот троек, четверок символов и т.д.
Для художественных текстов (русский или английский языки) предполагается, что строчные и заглавные символы не отличаются, знаки препинания объединены в один символ, к алфавиту добавлен пробел, для русских текстов буквы «е» и «ё», «ь» и «ъ» совпадают. При использовании текста программы учитываются все символы, кроме знаков табуляции.
2. После тестирования программы необходимо заполнить таблицу для отчета и проанализировать полученные результаты. Сравнить полученные результаты с результатами лабораторной работы 1.
Краткое описание алгоритмов программы
Результаты работы программы
Анализ полученных результатов
Лабораторная работа №3
ОПТИМАЛЬНОЕ ПОБУКВЕННОЕ КОДИРОВАНИЕ
Цель работы: Изучение метода оптимального кодирования Хаффмана.
Среда программирования: любая с С-подобным языком программирования.
Результат: программа, тестовые примеры, отчет.
Задание:
1. Запрограммировать процедуру двоичного кодирования текстового файла методом Хаффмана. Текстовые файлы использовать те же, что и в лабораторных работах №1,2. Для художественных текстов (русский или английский языки) предполагается, что строчные и заглавные символы не отличаются, знаки препинания объединены в один символ, к алфавиту добавлен пробел, для русских текстов буквы «е» и «ё», «ь» и «ъ» совпадают.
2. Проверить, что полученный код является префиксным.
3. После кодирования текстового файла вычислить оценки энтропии выходной последовательности, используя частоты отдельных символов, пар символов и троек символов.
4. Заполнить таблицу и проанализировать полученные результаты.
Избыточность кодирования определяется как m=Lср-H, где H – энтропия текста, Lcp – средняя длина кодового слова.
Описание алгоритмов, используемых в лабораторной работе
Результаты работы программы
Анализ и сравнение полученных результатов с теоретическими оценками
Лабораторная работа №4
МЕТОДЫ ПОЧТИ ОПТИМАЛЬНОГО КОДИРОВАНИЯ
Цель работы: Изучение метода почти оптимального кодирования Фано.
Среда программирования: любая с С-подобным языком программирования.
Результат: программа, тестовые примеры, отчет.
Задание:
1. Запрограммировать процедуры двоичного кодирования текстового файла методом Фано. Текстовые файлы использовать те же, что и в лабораторной работе №1 и 2. Для художественных текстов (русский или английский языки) предполагается, что строчные и заглавные символы не отличаются, знаки препинания объединены в один символ, к алфавиту добавлен пробел, для русских текстов буквы «е» и «ё», «ь» и «ъ» совпадают.
2. Проверить, что полученный код является префиксным.
3. После кодирования текстового файла вычислить оценки энтропии выходной последовательности, используя частоты отдельных символов, пар символов и тройки символов.
4. После тестирования программы необходимо заполнить таблицу и проанализировать полученные результаты.
Избыточность кодирования определяется как m=Lср-H, где H – энтропия текста, Lcp – средняя длина кодового слова.
Описание алгоритмов, используемых в лабораторной работе
Результаты работы программы
Анализ и сравнение полученных результатов с теоретическими оценками
Лабораторная работа №5
ПОЧТИ ОПТИМАЛЬНОЕ КОДИРОВАНИЕ
Цель работы: Изучение метода почти оптимального кодирования Шеннона.
Среда программирования: любая с С-подобным языком программирования.
Результат: программа, тестовые примеры, отчет.
Задание:
1. Запрограммировать процедуру двоичного кодирования текстового файла методом Шеннона. Текстовые файлы использовать те же, что и в лабораторной работе №1-4. Для художественных текстов (русский или английский языки) предполагается, что строчные и заглавные символы не отличаются, знаки препинания объединены в один символ, к алфавиту добавлен пробел, для русских текстов буквы «е» и «ё», «ь» и «ъ» совпадают.
2. Проверить, что полученный код является префиксным.
3. После кодирования текстового файла вычислить оценки энтропии выходной последовательности, используя частоты отдельных символов, пар символов и троек символов.
4. Заполнить таблицу и проанализировать полученные результаты.
Избыточность кодирования определяется как m=Lср-H, где H – энтропия текста, Lcp – средняя длина кодового слова.
Описание алгоритмов, используемых в лабораторной работе
Результаты работы программы
Анализ и сравнение полученных результатов с теоретическими оценками
ВЫЧИСЛЕНИЕ АНТРОПИИ ШЕНОНА
Цель работы: Экспериментальное изучение свойств энтропии Шеннона.
Среда программирования: любая с С-подобным языком программирования.
Результат: программа, тестовые примеры, отчет.
Задание:
1. Для выполнения данной лабораторной работы необходимо предварительно сгенерировать два файла. Каждый файл содержит последовательность символов, количество различных символов больше 2 (3,4 или 5). Объем файлов больше 10 Кб, формат txt.
Первый файл (назовем его F1) должен содержать последовательность символов с равномерным распределением, т.е. символы встречаются в последовательности равновероятно и независимо.
Второй файл (F2) содержит последовательность символов с неравновероятным распределением.
2. Составить программу, определяющую несколько оценок энтропии созданных текстовых файлов. Оценки энтропии необходимо вычислить по формуле Шеннона двумя способами, т.е. используя частоты отдельных символов и используя частоты пар символов. По желанию можно продолжить процесс вычисления оценок с использованием частот троек, четверок символов и т.д.
3. После тестирования программы необходимо заполнить таблицу для отчета и проанализировать полученные результаты.
Краткое описание алгоритмов программы
Результаты работы программы
Анализ и сравнение полученных результатов с теоретическими оценками
Лабораторная работа №2
ВЫЧИСЛЕНИЕ АНТРОПИИ ШЕНОНА
Цель работы: Экспериментальное изучение свойств энтропии Шеннона.
Среда программирования: любая с С-подобным языком программирования.
Результат: программа, тестовые примеры, отчет.
Задание:
1. Составить программу, определяющую несколько оценок энтропии текстового файла (размер не менее 10 Кб). Оценки энтропии необходимо вычислить по формуле Шеннона двумя способами, т.е. используя частоты отдельных символов и используя частоты пар символов. По желанию можно продолжить процесс вычисления оценок с использованием частот троек, четверок символов и т.д.
Для художественных текстов (русский или английский языки) предполагается, что строчные и заглавные символы не отличаются, знаки препинания объединены в один символ, к алфавиту добавлен пробел, для русских текстов буквы «е» и «ё», «ь» и «ъ» совпадают. При использовании текста программы учитываются все символы, кроме знаков табуляции.
2. После тестирования программы необходимо заполнить таблицу для отчета и проанализировать полученные результаты. Сравнить полученные результаты с результатами лабораторной работы 1.
Краткое описание алгоритмов программы
Результаты работы программы
Анализ полученных результатов
Лабораторная работа №3
ОПТИМАЛЬНОЕ ПОБУКВЕННОЕ КОДИРОВАНИЕ
Цель работы: Изучение метода оптимального кодирования Хаффмана.
Среда программирования: любая с С-подобным языком программирования.
Результат: программа, тестовые примеры, отчет.
Задание:
1. Запрограммировать процедуру двоичного кодирования текстового файла методом Хаффмана. Текстовые файлы использовать те же, что и в лабораторных работах №1,2. Для художественных текстов (русский или английский языки) предполагается, что строчные и заглавные символы не отличаются, знаки препинания объединены в один символ, к алфавиту добавлен пробел, для русских текстов буквы «е» и «ё», «ь» и «ъ» совпадают.
2. Проверить, что полученный код является префиксным.
3. После кодирования текстового файла вычислить оценки энтропии выходной последовательности, используя частоты отдельных символов, пар символов и троек символов.
4. Заполнить таблицу и проанализировать полученные результаты.
Избыточность кодирования определяется как m=Lср-H, где H – энтропия текста, Lcp – средняя длина кодового слова.
Описание алгоритмов, используемых в лабораторной работе
Результаты работы программы
Анализ и сравнение полученных результатов с теоретическими оценками
Лабораторная работа №4
МЕТОДЫ ПОЧТИ ОПТИМАЛЬНОГО КОДИРОВАНИЯ
Цель работы: Изучение метода почти оптимального кодирования Фано.
Среда программирования: любая с С-подобным языком программирования.
Результат: программа, тестовые примеры, отчет.
Задание:
1. Запрограммировать процедуры двоичного кодирования текстового файла методом Фано. Текстовые файлы использовать те же, что и в лабораторной работе №1 и 2. Для художественных текстов (русский или английский языки) предполагается, что строчные и заглавные символы не отличаются, знаки препинания объединены в один символ, к алфавиту добавлен пробел, для русских текстов буквы «е» и «ё», «ь» и «ъ» совпадают.
2. Проверить, что полученный код является префиксным.
3. После кодирования текстового файла вычислить оценки энтропии выходной последовательности, используя частоты отдельных символов, пар символов и тройки символов.
4. После тестирования программы необходимо заполнить таблицу и проанализировать полученные результаты.
Избыточность кодирования определяется как m=Lср-H, где H – энтропия текста, Lcp – средняя длина кодового слова.
Описание алгоритмов, используемых в лабораторной работе
Результаты работы программы
Анализ и сравнение полученных результатов с теоретическими оценками
Лабораторная работа №5
ПОЧТИ ОПТИМАЛЬНОЕ КОДИРОВАНИЕ
Цель работы: Изучение метода почти оптимального кодирования Шеннона.
Среда программирования: любая с С-подобным языком программирования.
Результат: программа, тестовые примеры, отчет.
Задание:
1. Запрограммировать процедуру двоичного кодирования текстового файла методом Шеннона. Текстовые файлы использовать те же, что и в лабораторной работе №1-4. Для художественных текстов (русский или английский языки) предполагается, что строчные и заглавные символы не отличаются, знаки препинания объединены в один символ, к алфавиту добавлен пробел, для русских текстов буквы «е» и «ё», «ь» и «ъ» совпадают.
2. Проверить, что полученный код является префиксным.
3. После кодирования текстового файла вычислить оценки энтропии выходной последовательности, используя частоты отдельных символов, пар символов и троек символов.
4. Заполнить таблицу и проанализировать полученные результаты.
Избыточность кодирования определяется как m=Lср-H, где H – энтропия текста, Lcp – средняя длина кодового слова.
Описание алгоритмов, используемых в лабораторной работе
Результаты работы программы
Анализ и сравнение полученных результатов с теоретическими оценками
Дополнительная информация
Все работы зачтены без замечаний!
Дата сдачи: март 2017 г.
Подходят для всех вариантов.
В архиве пять лабораторных работ. К каждой работе прилагается отчет + файлы программы.
Выполняю работы на заказ по следующим специальностям:
МТС, АЭС, МРМ, ПОВТиАС, ПМ, ФиК и др.
E-mail: help-sibguti@yandex.ru
Дата сдачи: март 2017 г.
Подходят для всех вариантов.
В архиве пять лабораторных работ. К каждой работе прилагается отчет + файлы программы.
Выполняю работы на заказ по следующим специальностям:
МТС, АЭС, МРМ, ПОВТиАС, ПМ, ФиК и др.
E-mail: help-sibguti@yandex.ru
Похожие материалы
Лабораторные работы №№1-5 по дисциплине: Теория информации
Amor
: 29 октября 2013
Лабораторная работа № 1 «Вычисление энтропии Шеннона».
1. Реализовать процедуру вычисления энтропии для текстового файла на английском языке. В процедуре необходимо подсчитывать частоты появления символов (прописные и заглавные буквы не отличаются, знаки препинания рассматриваются как один символ, пробел является самостоятельным символом), которые можно использовать как оценки вероятностей появления символов. Затем вычислить величину энтропии Шеннона. Точность вычисления -- 4 знака после запятой
200 руб.
Лабораторная работа №1 по дисциплине: Теория информации. Вариант общий
Roma967
: 26 марта 2023
Формулировка задания
Цель работы: Экспериментальное изучение свойств энтропии Шеннона.
Среда программирования: любая с С-подобным языком программирования.
Результат: программа, тестовые примеры, отчет.
Задание:
1. Для выполнения этой практической работы необходимо иметь три файла. Объем каждого файла больше 10 Кб, формат txt.
В первом файле должна содержаться последовательность символов (количество различных символов больше 3) с равномерным распределением, т.е. символы в файле встречают
300 руб.
Лабораторные работы №1-3 по дисциплине: Теория информации. Вариант общий
Roma967
: 20 июля 2024
Лабораторная работа №1
«Вычисление энтропии Шеннона»
Цель работы: Экспериментальное изучение свойств энтропии Шеннона.
Среда программирования: любая с С-подобным языком программирования.
Результат: программа, тестовые примеры, отчет.
Задание лабораторной работы
1. Для выполнения этой практической работы необходимо иметь три файла. Объем каждого файла больше 10 Кб, формат txt.
В первом файле должна содержаться последовательность символов (количество различных символов больше 3) с равномер
900 руб.
Лабораторные работы №№1-5 по дисциплине: Теория информации. Вариант №02
Jack
: 4 сентября 2014
Лабораторная работа №1
1. Задание
Реализовать процедуру вычисления энтропии для текстового файла на английском языке. В процедуре необходимо подсчитывать частоты появления символов (прописные и заглавные буквы не отличаются, знаки препинания рассматриваются как один символ, пробел является самостоятельным символом), которые можно использовать как оценки вероятностей появления символов. Затем вычислить величину энтропии Шеннона. Точность вычисления - 4 знака после запятой. Обязательно предусмотре
450 руб.
Теория информации. Лабораторная работа № 1
gnv1979
: 5 января 2017
Тема: Вычисление энтропии Шеннона
Цель работы: Экспериментальное изучение свойств энтропии Шеннона.
Среда программирования: любая с С-подобным языком программирования.
Результат: программа, тестовые примеры, отчет.
Задание:
1. Для выполнения данной лабораторной работы необходимо предварительно сгенерировать два файла. Каждый файл содержит последовательность символов, количество различных символов больше 2 (3,4 или 5). Объем файлов больше 10 Кб, формат txt.
Первый файл (назовем его F1) должен
30 руб.
Теория информации. Лабораторная работа №1.
zhekaersh
: 21 февраля 2016
Вычисление энтропии Шеннона
Цель работы: Экспериментальное изучение свойств энтропии Шеннона.
Среда программирования: любая с С-подобным языком программирования.
Результат: программа, тестовые примеры, отчет.
Задание:
1. Для выполнения данной лабораторной работы необходимо предварительно сгенерировать два файла. Каждый файл содержит последовательность символов, количество различных символов больше 2 (3,4 или 5). Объем файлов больше 10 Кб, формат txt.
Первый файл (назовем его F1) должен содер
70 руб.
Теория информации. Лабораторная работа №1
Legeoner13
: 6 марта 2015
Вычисление энтропии Шеннона
Порядок выполнения работы
1. Изучить теоретический материал гл. 2.
2. Реализовать процедуру вычисления энтропии для текстового файла на английском языке. В процедуре необходимо подсчитывать частоты появления символов (прописные и за-главные буквы не отличаются, знаки препинания рассматриваются как один символ, пробел является самостоятельным символом), которые можно использовать как оценки вероятностей появления символов. Затем вычислить величину энтропии Шеннона. Т
50 руб.
Лабораторная работа №1. Теория информации
mamontynok
: 31 января 2014
Реализовать процедуру вычисления энтропии для текстового файла на английском языке. В процедуре необходимо подсчитывать частоты появления символов (прописные и заглавные буквы не отличаются, знаки препинания рассматриваются как один символ, пробел является самостоятельным символом), которые можно использовать как оценки вероятностей появления символов. Затем вычислить величину энтропии Шеннона. Точность вычисления -- 4 знака после запятой. Обязательно предусмотреть возможность ввода имени файла
9 руб.
Другие работы
ММА/ИДО Иностранный язык в профессиональной сфере (ЛТМ) Тест 20 из 20 баллов 2024 год
mosintacd
: 28 июня 2024
ММА/ИДО Иностранный язык в профессиональной сфере (ЛТМ) Тест 20 из 20 баллов 2024 год
Московская международная академия Институт дистанционного образования Тест оценка ОТЛИЧНО
2024 год
Ответы на 20 вопросов
Результат – 100 баллов
С вопросами вы можете ознакомиться до покупки
ВОПРОСЫ:
1. We have … to an agreement
2. Our senses are … a great role in non-verbal communication
3. Saving time at business communication leads to … results in work
4. Conducting negotiations with foreigners we shoul
150 руб.
Задание №2. Методы управления образовательными учреждениями
studypro
: 13 октября 2016
Практическое задание 2
Задание 1. Опишите по одному примеру использования каждого из методов управления в Вашей профессиональной деятельности.
Задание 2. Приняв на работу нового сотрудника, Вы надеялись на более эффективную работу, но в результате разочарованы, так как он не соответствует одному из важнейших качеств менеджера - самодисциплине. Он не обязателен, не собран, не умеет отказывать и т.д.. Но, тем не менее, он отличный профессионал в своей деятельности. Какими методами управления Вы во
200 руб.
Особенности бюджетного финансирования
Aronitue9
: 24 августа 2012
Содержание:
Введение
Теоретические основы бюджетного финансирования
Понятие и сущность бюджетного финансирования
Характеристика основных форм бюджетного финансирования
Анализ бюджетного финансирования образования
Понятие и источники бюджетного финансирования образования
Проблемы бюджетного финансирования образования
Основные направления совершенствования бюджетного финансирования образования
Заключение
Список использованный литературы
Цель курсовой работы – исследовать особенности бюджетного фин
20 руб.
Программирование (часть 1-я). Зачёт. Билет №2
sibsutisru
: 3 сентября 2021
ЗАЧЕТ по дисциплине “Программирование (часть 1)”
Билет 2
Определить значение переменной y после работы следующего фрагмента программы:
a = 3; b = 2 * a – 10; x = 0; y = 2 * b + a;
if ( b > y ) or ( 2 * b < y + a ) ) then begin x = b – y; y = x + 4 end;
if ( a + b < 0 ) and ( y + x > 2 ) ) then begin x = x + y; y = x – 2 end;
200 руб.