Математический анализ (часть 2-я) Контрольная работа. Вариант №3
Состав работы
|
|
Работа представляет собой файл, который можно открыть в программе:
- Microsoft Word
Описание
Вариант №3
1. Даны функция z=z(x,y), точка A(x0;y0) и вектор a(ax;ay). Найти: 1) grad z в точке А. 2) производную в точке А по направлению вектора a.
2. Вычислить с помощью двойного интеграла в полярных координатах площадь фигуры, ограниченной кривой, заданной уравнением в декартовых координатах (a>0).
3. Вычислить с помощью тройного интеграла объем тела, ограниченного указанными поверхностями.
4. Исследовать сходимость числового ряда.
5. Найти интервал сходимости степенного ряда
6. Вычислить определенный интеграл с точностью до 0.001, разложив подынтегральную функцию в степенной ряд и затем проинтегрировать его почленно.
7. Разложить данную функцию f(x) в ряд Фурье в
8. Найти общее решение дифференциального уравнения.
9. Найти частное решение дифференциального уравнения , удовлетворяющее начальным условиям
1. Даны функция z=z(x,y), точка A(x0;y0) и вектор a(ax;ay). Найти: 1) grad z в точке А. 2) производную в точке А по направлению вектора a.
2. Вычислить с помощью двойного интеграла в полярных координатах площадь фигуры, ограниченной кривой, заданной уравнением в декартовых координатах (a>0).
3. Вычислить с помощью тройного интеграла объем тела, ограниченного указанными поверхностями.
4. Исследовать сходимость числового ряда.
5. Найти интервал сходимости степенного ряда
6. Вычислить определенный интеграл с точностью до 0.001, разложив подынтегральную функцию в степенной ряд и затем проинтегрировать его почленно.
7. Разложить данную функцию f(x) в ряд Фурье в
8. Найти общее решение дифференциального уравнения.
9. Найти частное решение дифференциального уравнения , удовлетворяющее начальным условиям
Дополнительная информация
все решения не картинками, а введены с помощью MS Equation!
Уважаемый слушатель, дистанционного обучения,
Оценена Ваша работа по предмету: Математический анализ (часть 2)
Вид работы: Контрольная работа 1
Оценка:Зачет
Дата оценки: 20.02.2015
Рецензия:Уважаемая ....., Ваша работа выполнена хорошо.
Агульник Владимир Игоревич
Уважаемый слушатель, дистанционного обучения,
Оценена Ваша работа по предмету: Математический анализ (часть 2)
Вид работы: Контрольная работа 1
Оценка:Зачет
Дата оценки: 20.02.2015
Рецензия:Уважаемая ....., Ваша работа выполнена хорошо.
Агульник Владимир Игоревич
Похожие материалы
Контрольная работа по дисциплине: Математический анализ (часть 2). Вариант 3
Учеба "Под ключ"
: 8 декабря 2022
Дистанционное обучение
Дисциплина «Математический анализ». Часть 2.
Вариант № 3
1. Вычислить несобственный интеграл или доказать его расходимость
dx/(X^(2)+x+1)
2. Вычислить с помощью двойного интеграла объем тела, ограниченного указанными поверхностями
z=0; z=y^(2); x^(2)+y^(2)=9
3. Вычислить криволинейный интеграл по координатам
(x-1/y)dy,
где Lab - дуга параболы y=x^(2) от точки A(1,1) до точки D(2,4).
4. Найти общее решение дифференциального уравнения первого порядка
(1+x^(2))y`-2xy=(1+
450 руб.
Дисциплина «Математический анализ». Часть 2. Вариант №3
romanovpavel
: 4 сентября 2018
1. Вычислить несобственный интеграл или доказать его расходимость
2. Вычислить с помощью двойного интеграла объем тела, ограниченного указанными поверхностями
3. Вычислить криволинейный интеграл по координатам
4. Найти общее решение дифференциального уравнения первого порядка
5. Решить задачу Коши
Зачет
45 руб.
Дисциплина «Математический анализ». Часть 2. Вариант № 3
nata
: 3 ноября 2017
1. Вычислить несобственный интеграл или доказать его расходимость
.
2. Вычислить с помощью двойного интеграла объем тела, ограниченного указанными поверхностями
; ;
3. Вычислить криволинейный интеграл по координатам
,
где - дуга параболы от точки до точки .
4. Найти общее решение дифференциального уравнения первого порядка
.
5. Решить задачу Коши
, .
85 руб.
Математический анализ (часть 2) Контрольная работа №1
Ekaterina4
: 19 января 2015
Контрольная работа 1
1.Дана функция z=z(x,y), точка A(x0,y0) и вектор a(a_x,a_y). Найти:
1) grad z в точке A; 2) производную в точке A в направлении вектора a.
z=arcsin(x^2/y), А(1,2), а(5,-12)
2.Вычислить с помощью двойного интеграла в полярных координатах площадь фигуры, ограниченной кривой, заданной уравнением в декартовых координатах (a>0)
x^4 =a^2 (x^2-〖3y〗^2 )
3. Вычислить с помощью тройного интеграла обьем тела, ограниченного указанными поверхностями: z=0, x^2+y^2=z, x^2+y^2=4
Иссле
600 руб.
Контрольная работа. Математический анализ. Часть 2. Вариант 2
rimmabatoeva
: 18 июня 2018
Контрольная работа. Математический анализ. Часть 2. Вариант 2
Полное описание заданий на картинке JPG во вложении
Задание 1. Вычислить несобственный интеграл или доказать его расходимость
Задание 2. Вычислить с помощью двойного интеграла объем тела, ограниченного указанными поверхностями
Задание 3. Вычислить криволинейный интеграл по координатам
Задание 4. Найти общее решение дифференциального уравнения первого порядка
Задание 5. Решить задачу Коши
100 руб.
Математический анализ (Часть 2-я), Контрольная работа, Вариант №2
artinjeti
: 6 января 2018
1. Вычислить несобственный интеграл или доказать его расходимость
2. Вычислить с помощью двойного интеграла объем тела, ограниченного указанными поверхностями
3. Вычислить криволинейный интеграл по координатам
4. Найти общее решение дифференциального уравнения первого порядка
5. Решить задачу Коши
Уважаемый студент, дистанционного обучения,
Оценена Ваша работа по предмету: Математический анализ (часть 2)
Вид работы: Контрольная работа
Оценка:Зачет
Дата оценки: 15.12.2017
Ваша раб
60 руб.
Математический анализ (часть 2), Контрольная работа, Вариант №2
alru
: 22 сентября 2016
1. Вычислить несобственный интеграл или доказать его расходимость
2. Вычислить с помощью двойного интеграла объем тела, ограниченного указанными поверхностями z=0; z=4-x-y; x^2+y^2=4;
3. Вычислить криволинейный интеграл по координатам
4. Найти общее решение дифференциального уравнения первого порядка
5. Решить задачу Коши
100 руб.
Математический анализ Часть 2.
Алексей134
: 24 декабря 2019
Дисциплина «Математический анализ». Часть 2.
Вариант № 0
1. Вычислить несобственный интеграл или доказать его расходимость
2. Вычислить с помощью двойного интеграла объем тела, ограниченного указанными поверхностями
3. Вычислить криволинейный интеграл по координатам
где - дуга параболы от точки до точки
4. Найти общее решение дифференциального уравнения первого порядка
5. Решить задачу Коши
Смотреть скриншот.
200 руб.
Другие работы
Механика жидкости и газа ТГУ Задача 32
Z24
: 7 ноября 2025
Плотность жидкости определяется погружением в нее поплавка. Вес поплавка в воздухе равняется 0,72 кН. Вес поплавка, погруженного в испытуемую жидкость G1, вес поплавка, погруженного в воду G2. Определить плотность жидкости.
Вариант: G1 = 0,54 кН, G2 = 0,56 кН.
150 руб.
Управление IT-проектами. Контрольная работа. Создание интернет - портала для ООО "..."
aleshin
: 28 июня 2023
Цель контрольной работы – систематизация и закрепление полученных
теоретических знаний и практических умений по проектному управлению;
формирование умений применять теоретические знания при решении вопросов
информационно-технологического проектирования; развитие творческой
инициативы, самостоятельности, ответственности и организованности.
Студент выбирает тему контрольной работы на свое усмотрение, связанную с
осуществлением IT-проекта (например: разработка программного обеспечения,
создание сай
392 руб.
Контрольная работа по дисциплине: Специальная оценка условий труда. Вариант №16
IT-STUDHELP
: 1 мая 2023
Вариант №16
Оценка условий труда на рабочем месте
Цель задания: ознакомить студентов с действующими:
1. ФЗ № 426 «О специальной оценке условий труда»
2.Приказ № 33н от 24.01.2014 г «Об утверждении методики проведения специально оценки условий труда, классификатора вредных и (или) опасных производственных факторов0 формы отчета о проведении специальной оценки условий труда и инструкции по ее заполнению»
3. Приказ № 80 от 07.02.2014 г «О форме и порядке подачи декларации соответствия условий
600 руб.
Термодинамика и теплопередача СамГУПС 2012 Задача 27 Вариант 0
Z24
: 11 ноября 2025
Одноступенчатый поршневой компрессор всасывает воздух в количестве V при давлении р1=0,1 МПа и температуре t1=27 ºC и сжимает его до давления по манометру р2. Определить секундную работу процесса сжатия и теоретическую мощность привода компрессора для случаев изотермического, адиабатного и политропного (с показателем политропы n=1,2) сжатия, определить также температуру воздуха в конце адиабатного и политропного сжатия. Cделать вывод по данным расчета.
180 руб.