Контрольная работа. Теория вероятностей и математическая статистика.Вариант №9
Состав работы
|
|
|
|
Работа представляет собой zip архив с файлами (распаковать онлайн), которые открываются в программах:
- Microsoft Word
Описание
Задача 10.9.
Из аэровокзала отправились 2 автобуса-экспресса к трапам самолетов. Вероятность своевременного прибытия каждого автобуса в аэропорт равна 0,95. Найти вероятность того, что: а) оба автобуса прибудут вовремя; б) оба автобуса опоздают; в) только один автобус прибудет вовремя; г) хотя бы один автобус прибудет вовремя.
Задача 11.9
Вероятность наступления события в каждом из независимых испытаний равна 0,8. Сколько нужно произвести испытаний, чтобы с вероятностью 0,95 можно было ожидать отклонение относительной частоты появления события от его вероятности не более, чем на 0,04.
Задача 12.9
Требуется найти: а) математическое ожидание; б) дисперсию; в) среднее квадратическое отклонение дискретной случайной величины X по заданному закону её распределения, заданному таблично (в первой строке таблицы указаны возможные значения, во второй строке – вероятности возможных значений).
Задача 13.9
Заданы математическое ожидание а и среднее квадратическое отклонение s нормально распределённой случайной величины X. Требуется найти:
а) вероятность того, что X примет значение, принадлежащее интервалу ( , );
б) вероятность того, что абсолютная величина отклонения X-а окажется меньше d .
а=7; s=2; =6; =10; d=4.
Из аэровокзала отправились 2 автобуса-экспресса к трапам самолетов. Вероятность своевременного прибытия каждого автобуса в аэропорт равна 0,95. Найти вероятность того, что: а) оба автобуса прибудут вовремя; б) оба автобуса опоздают; в) только один автобус прибудет вовремя; г) хотя бы один автобус прибудет вовремя.
Задача 11.9
Вероятность наступления события в каждом из независимых испытаний равна 0,8. Сколько нужно произвести испытаний, чтобы с вероятностью 0,95 можно было ожидать отклонение относительной частоты появления события от его вероятности не более, чем на 0,04.
Задача 12.9
Требуется найти: а) математическое ожидание; б) дисперсию; в) среднее квадратическое отклонение дискретной случайной величины X по заданному закону её распределения, заданному таблично (в первой строке таблицы указаны возможные значения, во второй строке – вероятности возможных значений).
Задача 13.9
Заданы математическое ожидание а и среднее квадратическое отклонение s нормально распределённой случайной величины X. Требуется найти:
а) вероятность того, что X примет значение, принадлежащее интервалу ( , );
б) вероятность того, что абсолютная величина отклонения X-а окажется меньше d .
а=7; s=2; =6; =10; d=4.
Дополнительная информация
Успешно зачтено
Похожие материалы
Теория вероятностей и математическая статистика. Контрольная работа. Вариант №9
growlist
: 11 апреля 2017
Задание №1. Вероятность появления поломок на каждой из k соединительных линий равна p. Какова вероятность того, что хотя бы две линии исправны?
k=4 p=0,25
Задание №2. В одной урне K белых шаров и L чёрных шаров, а в другой – M белых и N чёрных. Из первой урны случайным образом вынимают P шаров и опускают во вторую урну. После этого из второй урны также случайно вынимают R шаров. Найти вероятность того, что все шары, вынутые из второй урны, белые.
K=4, L=7, M=5, N=7, P=2, R=4
Задание №3. В типо
60 руб.
Теория вероятностей и математическая статистика, Контрольная работа. Вариант №9
Александр346
: 17 мая 2015
Задача 1 Вероятность появления поломок на каждой из k соединительных линий равна p. Какова вероятность того, что хотя бы две линии исправны?
При p=0,25 k=4
Задача 2 В одной урне K белых шаров и L чёрных шаров, а в другой – M белых и N чёрных. Из первой урны случайным образом вынимают P шаров и опускают во вторую урну. После этого из второй урны также случайно вынимают R шаров. Найти вероятность того, что все шары, вынутые из второй урны, белые.
При К=4, L=7, M=5, N=7, P=2, R=4.
Задача 3
140 руб.
Теория вероятностей и математическая статистика. Вариант №9
IT-STUDHELP
: 8 июня 2021
Вариант №9
Задача 1.
Вероятность появления поломок на каждой из 4 соединительных линий равна 0,25. Какова вероятность того, что хотя бы две линии исправны?
Задача 2.
В одной урне 4 белых шаров и 7 черных шаров, а в другой – 5 белых и 7 черных. Из первой урны случайным образом вынимают 2 шара и опускают во вторую урну. После этого из второй урны также случайно вынимают 4 шара. Найти вероятность того, что все шары, вынутые из второй урны, белые.
Задача 3.
В типографии имеется 5 печатных маши
500 руб.
Теория вероятностей и математическая статистика. Вариант: №9
Rufus
: 11 октября 2017
10.9. Из аэровокзала отправились 2 автобуса-экспресса к трапам самолётов. Вероятность своевременного прибытия каждого автобуса в аэропорт равна 0,95. Найти вероятность того, что: а) оба автобуса придут вовремя; б) оба автобуса опоздают; в) только один автобус прибудет вовремя; г) хотя бы один автобус прибудет вовремя.
Пусть А – своевременное прибытие первого автобуса P(A) = 0.95
B – своевременное прибытие второго P(B) = 0.95
Опоздание первого -
Опоздание второго -
а) оба прибудут вовремя
100 руб.
Теория вероятности и математическая статистика. Вариант №9
Mixhot
: 29 апреля 2014
Задача 10.9
Из аэровокзала отправились 2 автобуса-экспресса к трапам самолётов. Вероятность своевременного прибытия каждого автобуса в аэропорт равна 0,95. Найти вероятность того, что: а) оба автобуса придут вовремя; б) оба автобуса опоздают; в) только один автобус прибудет вовремя; г) хотя бы один автобус прибудет вовремя.
Задача 11.9
Вероятность наступления события в каждом из независимых испытаний равна 0,8. Сколько нужно произвести испытаний, чтобы с вероятностью 0,95 можно было ожид
40 руб.
Контрольная работа №1. Вариант №9. Теория вероятностей и математическая статистика
holm4enko87
: 28 ноября 2024
Задание 1. Сколько 6-ти буквенных слов можно составить из букв слова ЖИРАФА?
Задание 2. Вероятность попадания при стрельбе в случае ветренной погоды равна 0.6, при безветренной погоде 0.8. Вероятность ветренной погоды равна 0.4. Найти вероятность попадания при стрельбе.
Задание 3 Найти математическое ожидание, дисперсию и среднее квадратическое отклонение дискретной случайной величины, заданной рядом распределения
ꜫ - 1 0 3 4
p 0.1 0.5 0.1 0.3
Задание 4 Случайная величина распределена по норма
220 руб.
Контрольная работа по дисциплине: Теория вероятностей и математическая статистика. Вариант 9
SibGOODy
: 16 мая 2019
Задача 1 (Текст 2). Вероятность появления поломок на каждой из 4 соединительных линий равна 0.25. Какова вероятность того, что хотя бы две линии исправны?
Задача 2 (Текст 3). В одной урне K белых шаров и L чёрных шаров, а в другой – M белых и N чёрных. Из первой урны случайным образом вынимают P шаров и опускают во вторую урну. После этого из второй урны также случайно вынимают R шаров. Найти вероятность того, что все шары, вынутые из второй урны, белые.
Дано:
K=4; L=7; M=5; N=7; P=2; R=4.
Зад
450 руб.
Контрольная работа по дисциплине: Теория вероятностей и математическая статистика. Вариант №9
Roma967
: 15 мая 2016
Вариант №9
Задача 1
Десять томов сочинений Пушкина расположены в случайном порядке на двух полках по пять томов. Найти вероятность того, что первый и второй том окажутся на одной полке.
Задача 2
На склад поступают изделия, изготовленные на трех станках, среди них половина изготовлена на первом станке, треть на втором, остальные на третьем. Вероятность брака для изделий, изготовленных на первом станке 0,1, на втором – 0,2 и на третьем – 0,25. Случайно взятое изделие оказалось бракованным. Каков
450 руб.
Другие работы
Карта смазки крана УК-25СП
SerFACE
: 30 октября 2015
Кран укладочный для смены стрелочных переводов крупными звеньями. Самоходный укладочный кран УК-25 СП является головной машиной комплекса, предназначенного для транспортирования и замены крупными звеньями стрелочных переводов марок 1/6, 1/9, 1/11 с рельсами Р43, Р50, Р65 на железобетонных и деревянных брусьях массой не более 20 т, а также может использоваться для разборки и укладки рельсовых звеньев длиной 12,5 м с деревянными и железобетонными шпалами.
Техническая характеристика
Грузоподъемно
10 руб.
Контрольная работа №2 по дисциплине Высшая математика «Дифференциальное исчисление». Вариант №3
serjo
: 16 декабря 2021
Контрольная работа №2 по дисциплине
Высшая математика
«Дифференциальное исчисление» (Тусур)
Вариант 3 кол-во задач 14.
ТОМСКИЙ ГОСУДАРСТВЕННЫЙ
УНИВЕРСИТЕТ
СИСТЕМ УПРАВЛЕНИЯ И
РАДИОЭЛЕКТРОНИКИ (ТУСУР)
Л. И. Магазинников,
А. Л. Магазинников
3000 руб.
Контрольная работа по дисциплине: Основы администрирования сетевых устройств. Вариант 11
Учеба "Под ключ"
: 25 августа 2022
Вариант задания № 11
1. Сообщение №1
0000: 08 00 1e 90 0b 20 08 00 2b e8 0b 8e 08 00 45 60
0010: 01 1a 0b 25 00 00 20 11 00 09 c0 a5 95 6а c7 45
0020: 9f d3 c0 7c 00 a1 01 06 4a 51 30 81 fb 02 01 00
0030: 04 06 61 65 73 2d 31 31 a0 81 ed 02 04 35 97 ac
0040: 55 02 01 00 02 01 00 30 81 de 30 0c 06 08 2b 06
0050: 01 02 01 01 03 00 05 00 30 0e 06 0a 2b 06 01 02
0060: 01 02 02 01 05 01 05 00 30 0e 06 0a 2b 06 01 02
0070: 01 02 02 01 08 01 05 00 30 0e 06 0a 2b 06 01 02
800 руб.
МЧ00.03.00.00 Кран сливной
coolns
: 27 июня 2019
Кран сливной сборочный чертеж
Кран сливной чертежи
Кран сливной деталирование
Кран сливной скачать
Кран сливной 3д модель
Сливной кран монтируется на конце трубопровода и служит для слива жидкости. При сливе рукоятку поз.4 устанавливают вдоль трубопровода, для прекращения слива - поперек. Чтобы обеспечить герметичность, конус пробки поз. 2 притирается к внутренней стенке корпуса поз.1.
Крышка поз.3 и втулка поз.5 обеспечивают необходимую плотность прилегания пробки поз.2 к внутренней поверхност
190 руб.