Контрольная работа. Общая теория связи. Вариант 14.
Состав работы
|
|
Работа представляет собой файл, который можно открыть в программе:
- Microsoft Word
Описание
Задача 1.1
На вход транзисторного усилителя воздействует бигармоническое напряжение:
u(t) = Um1cosω1t + Um2cosω2t
Вольтамперная характеристика полевого транзистора аппроксимируется полиномом:
ic = a0 + a1u + a2u2,
где iс – ток стока;
u - напряжение на затворе транзистора.
Рассчитать спектр тока и построить спектральную диаграмму для исходных данных таблицы.
Исходные данные:
Показатель Значение
Вариант 14
a0, мА/В 5
a1, мА/В 8,5
a2, мА/В 3
f1, кГц 3
f2, кГц 0,7
Um1, В 0,8
Um2, В 0,6
Задача 2.1
Ток в нелинейном резисторе i связан с приложенным напряжением U кусочно-линейной зависимостью:
i= {█(0,u<U_0@S(u-U_0 ),u≥U_0 ),
где S – крутизна, U0 – напряжение отсечки.
Найдите постоянную составляющую тока I0, амплитуду первой, второй и третьей гармоник протекающего тока (Im1, Im2, Im3) для входного воздействия в виде напряжения:
Uвх(t) = E + Umcosω0t
где Е – напряжение смещения, Um – амплитуда.
Постройте спектральную диаграмму протекающего тока и укажите, какие спектральные составляющие следует выделять параллельным колебательным контуром для получения умножения частоты в два и три раза.
Исходные данные:
Показатель Значение
Вариант 14
S, мА/В 20
U0, В 0,3
Е, В 0
Um, В 0,4
Определить:
I0-?
Im1, Im2,Im3- ?
Построить спектр тока
Задача 3.1
На вход модулятора с вольтамперной характеристикой нелинейного элемента вида:
i = a0 + a1u + a2u2+ a3u3
подано напряжение:
u = -E + UmΩcosΩt + Umω0 cosω0t,
Выходной контур модулятора настроен на частоту ω0 и имеет полосу пропускания 2∆ω = 2Ω (на уровне 0,707 от максимума).
Требуется:
1) Изобразить схему модулятора на полевом транзисторе.
2) Вывести в общем виде уравнение для тока, питающего выходной контур модулятора (влиянием сопротивления контура на величину тока пренебречь).
3) Определить коэффициент модуляции m и амплитуду тока Jm1 и записать выражение для амплитудно-модулированного сигнала (по току).
4) Определить коэффициент глубины модуляции по напряжению с учетом влияния колебательного контура.
5) Рассчитать и построить статистическую модуляционную характеристику при изменении смещения от 0 до Еmax (Еmax – значение смещения, при котором Jm1 обращается в ноль).
6) Определить по построенной модуляционной характеристике режим модулятора (E, UmΩ, m) и сравнить с заданным режимом.
Исходные данные:
Показатель Значение
Вариант 14
a1, мА/В 14
a2, мА/В 8
a3, мА/В 1,5
Е, В 4,5
Um, В 3,5
Um0, В 2,8
Задача 3.2
Амплитудный детектор, при воздействии на него слабого сигнала, используется как квадратичный с характеристикой нелинейного элемента вида:
ic = a2u2,
При увеличении амплитуды входного сигнала в 10 раз этот детектор используется как «линейный» с характеристикой:
i= {█(0,при u≤U_0@au,при u≥0 )
На детектор в обоих случаях подается напряжение:
u(t) = Um(1 + m cosΩt) cosω0t
Требуется:
Изобразить схему детектора на диоде;
Вычислить ток, протекающий через сопротивление нагрузки R для квадратичного и линейного режимов детектирования (Um и Um х 10) и изобразить (в масштабе) спектральные диаграммы;
Вычислить коэффициент нелинейных искажений при квадратичном детектировании.
Исходные данные:
Показатель Значение
Вариант 14
a, мА/В 4,4
a2, мА/В2 3,4
Um, В 0,63
m 0,62
ρ0 65
Задача 4.1
Задано колебание, модулированное по частоте:
u(t) = U0cos(ω0t + Msin t),
U0 =1
Это колебание можно характеризовать и как колебание, модулированное по фазе, если индекс фазовой модуляции МФ = М, а М – индекс частотной модуляции.
Требуется:
1) Определить для частотной модуляции частоту F, если для всех вариантов девиация частоты одинакова и составляет 50 кГц.
2) Определить для случая М = МФ количество боковых частот и полосу частот, занимаемую ЧМ и ФМ – колебаниями.
3) Определить количество боковых частот и полосу, занимаемую ЧМ и ФМ – колебаниями при уменьшении модулирующей частоты в n раз.
4) Определить количество боковых частот и полосу, занимаемую ЧМ и ФМ – колебаниями, амплитуда модулирующего сигнала увеличится в к раз по сравнению с п. 2.
5) Рассчитать и построить для всех случаев спектральной диаграммы с соблюдением масштаба.
Исходные данные:
Показатель Значение
Вариант 14
M 4
n 3
K 1,8
На вход транзисторного усилителя воздействует бигармоническое напряжение:
u(t) = Um1cosω1t + Um2cosω2t
Вольтамперная характеристика полевого транзистора аппроксимируется полиномом:
ic = a0 + a1u + a2u2,
где iс – ток стока;
u - напряжение на затворе транзистора.
Рассчитать спектр тока и построить спектральную диаграмму для исходных данных таблицы.
Исходные данные:
Показатель Значение
Вариант 14
a0, мА/В 5
a1, мА/В 8,5
a2, мА/В 3
f1, кГц 3
f2, кГц 0,7
Um1, В 0,8
Um2, В 0,6
Задача 2.1
Ток в нелинейном резисторе i связан с приложенным напряжением U кусочно-линейной зависимостью:
i= {█(0,u<U_0@S(u-U_0 ),u≥U_0 ),
где S – крутизна, U0 – напряжение отсечки.
Найдите постоянную составляющую тока I0, амплитуду первой, второй и третьей гармоник протекающего тока (Im1, Im2, Im3) для входного воздействия в виде напряжения:
Uвх(t) = E + Umcosω0t
где Е – напряжение смещения, Um – амплитуда.
Постройте спектральную диаграмму протекающего тока и укажите, какие спектральные составляющие следует выделять параллельным колебательным контуром для получения умножения частоты в два и три раза.
Исходные данные:
Показатель Значение
Вариант 14
S, мА/В 20
U0, В 0,3
Е, В 0
Um, В 0,4
Определить:
I0-?
Im1, Im2,Im3- ?
Построить спектр тока
Задача 3.1
На вход модулятора с вольтамперной характеристикой нелинейного элемента вида:
i = a0 + a1u + a2u2+ a3u3
подано напряжение:
u = -E + UmΩcosΩt + Umω0 cosω0t,
Выходной контур модулятора настроен на частоту ω0 и имеет полосу пропускания 2∆ω = 2Ω (на уровне 0,707 от максимума).
Требуется:
1) Изобразить схему модулятора на полевом транзисторе.
2) Вывести в общем виде уравнение для тока, питающего выходной контур модулятора (влиянием сопротивления контура на величину тока пренебречь).
3) Определить коэффициент модуляции m и амплитуду тока Jm1 и записать выражение для амплитудно-модулированного сигнала (по току).
4) Определить коэффициент глубины модуляции по напряжению с учетом влияния колебательного контура.
5) Рассчитать и построить статистическую модуляционную характеристику при изменении смещения от 0 до Еmax (Еmax – значение смещения, при котором Jm1 обращается в ноль).
6) Определить по построенной модуляционной характеристике режим модулятора (E, UmΩ, m) и сравнить с заданным режимом.
Исходные данные:
Показатель Значение
Вариант 14
a1, мА/В 14
a2, мА/В 8
a3, мА/В 1,5
Е, В 4,5
Um, В 3,5
Um0, В 2,8
Задача 3.2
Амплитудный детектор, при воздействии на него слабого сигнала, используется как квадратичный с характеристикой нелинейного элемента вида:
ic = a2u2,
При увеличении амплитуды входного сигнала в 10 раз этот детектор используется как «линейный» с характеристикой:
i= {█(0,при u≤U_0@au,при u≥0 )
На детектор в обоих случаях подается напряжение:
u(t) = Um(1 + m cosΩt) cosω0t
Требуется:
Изобразить схему детектора на диоде;
Вычислить ток, протекающий через сопротивление нагрузки R для квадратичного и линейного режимов детектирования (Um и Um х 10) и изобразить (в масштабе) спектральные диаграммы;
Вычислить коэффициент нелинейных искажений при квадратичном детектировании.
Исходные данные:
Показатель Значение
Вариант 14
a, мА/В 4,4
a2, мА/В2 3,4
Um, В 0,63
m 0,62
ρ0 65
Задача 4.1
Задано колебание, модулированное по частоте:
u(t) = U0cos(ω0t + Msin t),
U0 =1
Это колебание можно характеризовать и как колебание, модулированное по фазе, если индекс фазовой модуляции МФ = М, а М – индекс частотной модуляции.
Требуется:
1) Определить для частотной модуляции частоту F, если для всех вариантов девиация частоты одинакова и составляет 50 кГц.
2) Определить для случая М = МФ количество боковых частот и полосу частот, занимаемую ЧМ и ФМ – колебаниями.
3) Определить количество боковых частот и полосу, занимаемую ЧМ и ФМ – колебаниями при уменьшении модулирующей частоты в n раз.
4) Определить количество боковых частот и полосу, занимаемую ЧМ и ФМ – колебаниями, амплитуда модулирующего сигнала увеличится в к раз по сравнению с п. 2.
5) Рассчитать и построить для всех случаев спектральной диаграммы с соблюдением масштаба.
Исходные данные:
Показатель Значение
Вариант 14
M 4
n 3
K 1,8
Дополнительная информация
Оценка:Зачет
Дата оценки: 25.10.2017
Резван Иван Иванович
Дата оценки: 25.10.2017
Резван Иван Иванович
Похожие материалы
Контрольная работа по дисциплине: Общая теория связи. Вариант №14.
teacher-sib
: 5 марта 2019
Тема 1. Спектральное представление сигналов на выходе
нелинейных цепей
Задание 1
На вход транзисторного усилителя воздействует бигармоническое напряжение
Вольтамперная характеристика полевого транзистора аппроксимируется полиномом
где iс - ток стока; u - напряжение на затворе транзистора.
Рассчитать спектр тока и построить спектральную диаграмму для исходных данных таблицы 1.1 Номер варианта 14
Таблица 1.1.
Вариант a0, мА a1, мА/В a2, (мА/В)2 f1, кГц f2, кГц Um1, В Um2, В
14 5 8.5 3 3 0.7
500 руб.
Контрольная работа по дисциплине: Общая теория связи. Вариант №14
Roma967
: 2 июня 2016
СПЕКТРАЛЬНОЕ ПРЕДСТАВЛЕНИЕ СИГНАЛОВ НА ВЫХОДЕ НЕЛИНЕЙНЫХ ЦЕПЕЙ
Задача 1.1
На вход транзисторного усилителя воздействует бигармоническое напряжение:
u(t) = Um1cosw1t + Um2cosw2t
Вольтамперная характеристика полевого транзистора аппроксимируется полиномом:
ic = a0 + a1u + a2u2,
где iс - ток стока;
u - напряжение на затворе транзистора.
Рассчитать спектр тока и построить спектральную диаграмму для исходных данных таблицы.
Исходные данные:
Вариант:14
а0=5 мА/В
а1=8,5 мА/В
а2=3 мА/В
f1=3 кГц
f2=0,7 к
1200 руб.
КОНТРОЛЬНАЯ РАБОТА по Общей Теории связи
007
: 2 мая 2020
К полупроводниковому прибору с нелинейной вольт-амперной характеристикой прикладывается бигармоническое напряжение:
u(t)=U_m1 cos(ω_1 t)+U_m2 cos(ω_2 t)
Вольт-амперная характеристика прибора аппроксимируется степенным полиномом:
i_c=a_0+a_1 u+a_2 u^2
Где ic – протекающий через полупроводниковый прибор ток;
u – воздействующее на полупроводниковый прибор напряжение.
Требуется:
Рассчитать спектр тока и построить спектральную диаграмму для исходных данных варианта.
Исходные данные:
Вари
350 руб.
Контрольная работа №1 Общая теория связи
lyolya
: 28 июня 2022
Контрольная работа №1 по общей теории связи
Вариант 37
Решение всех задач подробное ЗАДАЧА 1. 1. Стационарный случайный процесс х(t) имеет одномерную функцию плотности вероятности (ФПВ) мгновенных значений w(x), график и параметры которой приведены в таблице 1.
2. Функция распределения вероятностей (ФРВ) связана с ФПВ следующим соотношением:
ЗАДАЧА 3. Данные: Вольт-амперная характеристика (ВАХ) биполярного транзистора амплитудного модулятора аппроксимирована выражением:
РАССМОТРИМ ОСНОВНЫЕ ВИДЫ
150 руб.
Контрольная работа по дисциплине: Общая теория связи
vladimir2050
: 5 января 2018
На вход транзисторного усилителя воздействует бигармоническое напряжение
Вольтамперная характеристика полевого транзистора аппроксимируется полиномом
где - ток cтока, u - напряжение на затворе транзистора
Рассчитать спектр тока и построить спектральную диаграмму для исходных данных таблицы 1.1 Номер варианта соответствует двум последним цифрам пароля
190 руб.
Контрольная работа по дисциплине: Общая теория связи
lebed-e-va
: 16 апреля 2015
Тема 1. Спектральное представление сигналов на выходе
нелинейных цепей
Задание 1
На вход транзисторного усилителя воздействует бигармоническое напряжение
Вариант a0, мА a1, мА/В a2, (мА/В)2 f1, кГц f2, кГц Um1, В Um2, В
4 6 8 2.7 4 1 0.1 0
100 руб.
Контрольная работа по дисциплине: Общая теория связи
pepol
: 16 декабря 2014
Задание 1.
На вход транзисторного усилителя воздействует бигармоническое напряжение
u(t)= Um1 cosω1t+Um2 cosω2 t
Вольтамперная характеристика полевого транзистора аппроксимируется полиномом
,
где iс - ток стока;
u - напряжение на затворе транзистора.
Рассчитать спектр тока и построить спектральную диаграмму для исходных данных таблицы 1.1 Номер варианта соответствует двум последним цифрам пароля
Таблица 1.1
Данные
Варианты а
мА аo
мА/В a1 2
мА/В f1
кГц
f2
кГц Um1
В Um2
В
7
100 руб.
Общая теория связи. Контрольная работа, Вариант №13
lemma
: 18 марта 2021
Задание 1: К полупроводниковому прибору с нелинейной вольт-амперной характеристикой прикладывается бигармоническое напряжение:
u(t)=U_m1 cos(ω_1 t)+U_m2 cos(ω_2 t)
Вольт-амперная характеристика прибора аппроксимируется степенным полиномом:
i_c=a_0+a_1 u+a_2 u^2
Где ic – протекающий через полупроводниковый прибор ток;
u – воздействующее на полупроводниковый прибор напряжение.
Требуется:
Рассчитать спектр тока и построить спектральную диаграмму для исходных данных варианта.
Задание 2:То
100 руб.
Другие работы
Рабинович О.М. Сборник задач по технической термодинамике Задача 195
Z24
: 25 сентября 2025
1 кг воздуха при температуре t1=30 ºC и давлении р1=0,1 МПа сжимается адиабатно до р2=1 МПа.
Найти конечный объем, конечную температуру и затрачиваемую работу.
Ответ: t2=312 ºC, υ2=0,168 м³/кг, l=—202,3 кДж/кг.
150 руб.
Экзамен по дисциплине: Основы построения телекоммуникационных систем и сетей. Билет №14
mitriy
: 27 мая 2014
1. Типы и параметры орбит спутников Земли.
2. Транкинговые системы радиосвязи. Признаки, преимущества, отличие от сотовых систем.
3. Особенности технологии SDH.
100 руб.
Цифровая обработка сигналов. Контрольная работа Вариант 29
sprut89
: 2 мая 2020
Цифровая обработка сигналов. Контрольная работа Вариант 29
400 руб.
Виды и характеристика соучастников преступления в уголовном праве
Lokard
: 10 марта 2014
П Л А Н
1.ВВЕДЕНИЕ
2.ПОНЯТИЕ И ПРИЗНАКИ СОУЧАСТИЯ В ПРЕСТУПЛЕНИИ
2.1 Объективные признаки соучастия в преступлении
2.2 Субъективные признаки соучастия в преступлении
3.ВИДЫ СОУЧАСТНИКОВ ПРЕСТУПЛЕНИЯ ПО УГОЛОВНОМУ ПРАВУ
4.ХАРАКТЕРИСТИКА СОУЧАСТНИКОВ ПРЕСТУПЛЕНИЯ
4.1 Исполнитель
4.2 Организатор преступления
4.3 Подстрекатель
4.4 Пособник
5.ЗАКЛЮЧЕНИЕ
6.ИСПОЛЬЗОВАННАЯ ЛИТЕРАТУРА
1. В В Е Д Е Н И Е
В отличие от других социальных идей и политических ориентаций демократическое правовое государство п
10 руб.