Теория вероятностей и математическая статистика. Экзамен. Билет №3
Состав работы
|
|
Работа представляет собой файл, который можно открыть в программе:
- Microsoft Word
Описание
1. Формула полной вероятности. Формулы Бейеса. Повторение независимых испытаний. Формула Бернулли
2. Из урны, где находятся 8 белых и 4 черных шара, случайно вытащены 6 шаров. Какова вероятность того, что среди них будет 3 черных шара?
3. Дискретная случайная величина имеет следующий ряд распределения. Найти величину a, математическое ожидание и среднее квадратическое отклонение этой случайной величины.
4. Непрерывная случайная величина имеет плотность распределения. Найти величину с, интегральную функцию распределения, математическое ожидание и среднее квадратическое отклонение этой случайной величины.
5. Двумерная дискретная случайная величина имеет таблицу распределения. Найти величину q и коэффициент корреляции этой случайной величины.
2. Из урны, где находятся 8 белых и 4 черных шара, случайно вытащены 6 шаров. Какова вероятность того, что среди них будет 3 черных шара?
3. Дискретная случайная величина имеет следующий ряд распределения. Найти величину a, математическое ожидание и среднее квадратическое отклонение этой случайной величины.
4. Непрерывная случайная величина имеет плотность распределения. Найти величину с, интегральную функцию распределения, математическое ожидание и среднее квадратическое отклонение этой случайной величины.
5. Двумерная дискретная случайная величина имеет таблицу распределения. Найти величину q и коэффициент корреляции этой случайной величины.
Дополнительная информация
2017 г.
отлично
Могу сделать другой вариант
отлично
Могу сделать другой вариант
Похожие материалы
Теория вероятностей и математическая статистика, Экзамен, Билет №3
artinjeti
: 9 апреля 2018
1. Формула полной вероятности. Формулы Бейеса. Повторение независимых испытаний. Формула Бернулли
2. Из урны, где находятся 8 белых и 4 черных шара, случайно вытащены 6 шаров. Какова вероятность того, что среди них будет 3 черных шара?
3. Дискретная случайная величина имеет следующий ряд распределения. Найти величину a, математическое ожидание и среднее квадратическое отклонение этой случайной величины.
4. Непрерывная случайная величина имеет плотность распределения. Найти величину с, интегральн
150 руб.
Теория вероятностей и математическая статистика. Экзамен. Билет №3
DENREM
: 19 марта 2014
Билет №3.
Теоретический вопрос. Схема Бернулли и Формула Бернулли.
Практическое задание. Оцените распределение случайной величины по выборке:
Xi 1.138 0.317 -0.048 0.062 -6.102 0.021 0.643 -8.326 -0.431 0.698
- выдвинете обоснованную гипотезу о принадлежности с.в. к некоторому распределению
- оцените параметры выбранного распределения методом моментов или методом максимального правдоподобия, объясните выбор метода
- проверьте выдвинутую гипотезу о распределении с.в. любым известным методом, про
120 руб.
Теория вероятности и математическая статистика. Экзамен. Билет № 3
radist24
: 15 декабря 2011
1. Основные соединения и формулы комбинаторики.
2. В группе 9 стрелков: отличных – 5, хороших – 2, остальные – удовлетворительные. Вероятность попадания отличным стрелком – 0,9, хорошим – 0,7, удовлетворительным – 0,6. Какова вероятность попадания наугад взятым стрелком?
3. Среднее число вызовов, поступающих на АТС в 1 сек, равно двум. Найти вероятность того, что за 2 сек поступит: а) 3 вызова; б) менее двух вызовов.
4. Случайная величина Х имеет плотность распределения .
Найти
5. Каков
70 руб.
Экзамен по дисциплине: Теория вероятностей и математическая статистика. Билет №3
freelancer
: 10 апреля 2016
Задание 1.
1. Формула полной вероятности. Формулы Бейеса. Повторение независимых испытаний. Формула Бернулли
Задание 2.
2. Из урны, где находятся 8 белых и 4 черных шара, случайно вытащены 6 шаров. Какова вероятность того, что среди них будет 3 черных шара?
Задание 3.
Дискретная случайная величина имеет следующий ряд распределения
Х -2 -1 0 5 10
р 0,11 0,22 0,11 а 0,04
Найти величину a, математическое ожидание и среднее квадратическое отклонение этой случайной величины.
Задание 4.
Непреры
100 руб.
Экзамен по дисциплине «Теория вероятности и математическая статистика». Билет № 3
sanco25
: 6 февраля 2012
1. Основные соединения и формулы комбинаторики.
2. В группе 9 стрелков: отличных – 5, хороших – 2, остальные – удовлетворительные. Вероятность попадания отличным стрелком – 0,9, хорошим – 0,7, удовлетворительным – 0,6. Какова вероятность попадания наугад взятым стрелком?
3. Среднее число вызовов, поступающих на АТС в 1 сек., равно двум. Найти вероятность того, что за 2 сек поступит: а) 3 вызова; б) менее двух вызовов.
4. Случайная величина Х имеет плотность распределения.
Найти с, M(X).
5.
90 руб.
Теория вероятностей и математическая статистика. Экзамен
Ane4ka666
: 31 октября 2015
1. Дисперсия случайной величины и её свойства.
2. Из колоды в 36 карт извлекают четыре карты. Какова вероятность, что все они одной масти?
100 руб.
Экзамен. Теория вероятности и математическая статистика
елена85
: 4 декабря 2014
Билет 7
1. Повторение независимых испытаний. Формула Бернулли.
2. В урне 15 шаров: 9 красных и 6 синих. Найти вероятность того, что два наугад вынутых шара будут одного цвета.
150 руб.
Теория вероятностей и математическая статистика. 2-й семестр. Экзамен. Билет №3
Ирина16
: 10 февраля 2017
1. Формула полной вероятности. Формулы Бейеса. Повторение независимых испытаний. Формула Бернулли.
2. Из урны, где находятся 8 белых и 4 черных шара, случайно вытащены 6 шаров. Какова вероятность того, что среди них будет 3 черных шара?
3. Дискретная случайная величина имеет следующий ряд распределения
Х -2 -1 0 5 10
р 0,11 0,22 0,11 а 0,04
Найти величину a, математическое ожидание и среднее квадратическое отклонение этой случайной величины.
4. Непрерывная случайная величина имеет плотност
200 руб.
Другие работы
История японских брендов
Aronitue9
: 21 августа 2012
Рассмотрено словообразование таких неологизмов как FujiFilm, Fujitsu, Hitachi, Panasonic, Mitsubishi, Sanyo и Toshiba. При проведении исследования преследовались две основных цели: выяснить, что же на деле означают иероглифы, составляющие имя бренда, плюс историческая подоплека, вызвавшая к жизни эти имена.
5 руб.
Контрольная работа по дисциплине: Менеджмент. Вариант 1
Учеба "Под ключ"
: 23 марта 2025
Задание контрольной работы
Тема 1. Сущность менеджмента и его значение в условиях рыночной экономики
Теоретическая часть
Понятия “управление” и “менеджмент”, их соотношение. Исторические предпосылки менеджмента. Корпоративная природа менеджмента. Современные подходы к управлению: ориентация на потребителя, предпринимательский подход, инновационный подход в управлении и т.д.
Практическая часть
1. Характеристика организации (предприятия)
2. Выделите и укажите особенности и специфику управления Ва
1000 руб.
Задача. Физика
anderwerty
: 20 января 2016
Рассчитать систему линз, чтобы диаметр пятна с длинной волны излучения нм на расстоянии м от лазера был мм. Лазер выбирать самим.
10 руб.
Европейская и американская социологические школы: общее и особенности
Lokard
: 9 февраля 2014
Содержание
Введение
Глава1. Американская социологическая школа
Глава 2. Европейские социологические школы
2.1 Германия
2.2 Франция
2.3 Социология за ЛаМаншем
2.4 Российская социологическая школа
Список литературы
Введение
Историю социологии можно разделить на два периода. Первый характерен для социальных теорий, которые еще не выделились в отдельную науку. Второй период начинается в средине ХIХ века, когда французский ученый Огюст Конт основал самостоятельную науку об обществе, назвав ее "Социо
10 руб.