Курсовая работа. Вычислительная математика. Вариант №7. ДО СибГУТИ.
Состав работы
|
|
|
|
|
|
|
|
|
|
|
|
Работа представляет собой rar архив с файлами (распаковать онлайн), которые открываются в программах:
- Microsoft Word
- Программа для просмотра текстовых файлов
Описание
Задание на курсовую работу
Напряжение в электрической цепи описывается дифференциальным уравнением с начальным условием:
Написать программу, которая определит количество теплоты, выделяющегося на единичном сопротивлении за единицу времени. Количество теплоты определяется по формуле: . Дифференциальное уравнение решить методом Рунге-Кутта четвертого порядка с точностью 10-4 (для достижения заданной точности использовать метод двойного пересчета). Интеграл вычислить по формуле Симпсона с шагом 0.1. Для нахождения значений функции в промежуточных узлах применить линейную интерполяцию. Вывести решение дифференциального уравнения, результаты интерполяции и количество теплоты.
Теоретическая часть:
Метод Рунге-Кутта
Обыкновенные дифференциальные уравнения (ОДУ) широко используются для математического моделирования процессов и явлений в различных областях науки и техники. Переходные процессы в радиотехнике, кинетика химических реакций, динамика биологических популяций, движение космических объектов, модели экономического развития исследуются с помощью ОДУ.
В дифференциальное уравнение 1-го порядка в качестве неизвестных величин входят функция y(x) и ее первая производная по аргументу x
( x, y, y1)=0. (1)
Уравнение (1) имеет бесконечное множество решений. Единственные решения выделяют с помощью дополнительных условий, которым должны удовлетворять искомые решения. В зависимости от вида таких условий рассматривают три типа задач, для которых доказано существование и единственность решений.
Первый тип, рассматриваемый в данной курсовой, – это задачи Коши, или задачи с начальными условиями. Для таких задач кроме исходного уравнения (1), в некоторой точке xo должны быть заданы начальные условия, т.е. значения функции y(x)
....................
Численное интегрирование. Формула Симпсона.
Численное интегрирование состоит в нахождении интеграла от непрерывной функции по квадратной формуле:
где коэффициенты - действительные числа и узлы принадлежат
i=1, 2, ... , n. Вид суммы
определяет метод численного
............
Практическая часть:
Листинг программы с комментариями
PROGRAM kursovaya; {название программы}
uses crt; {подключаем модуль ctr}
const epsilon=0.0001; {Заданная точность метода Рунге-Кутта}
{заданная правая часть дифференциального уравнения}
function f(x,y:real):real;
begin {начало}
f:=cos(4*x+y)+3*(x-y); {выражение по которому считаем}
end; {конец}
{Функция решения дифференциального уравнения методом Рунге-Кутта 4-го порядка с оценкой погрешности методом двойной прогонки
x0,y0 - начальные условия
..................
function Runge_Kutt(x0,y0:real;x1:real;N_init:integer;var X_out,Y_out:array of real):integer; {создание функции}
var {объявление переменных}
i : Integer;
h,x,y: Double;
y1 : Double;
k1 : Double; {присвоение переменным типа}
k2 : Double;
k3 : Double;
{Используются для хранение данных, полученных на предыдущем шаге расчета}
X_in,Y_in:array[0..100] of real; {массив}
eps:real;
N:integer;
Begin {начало}
for i:=0 to 100 do
begin {начало}
X_in[i]:=0;
Y_in[i]:=0;
end; {конец}
N:=N_init;
Repeat {повтор}
h := (x1-x0)/n; {определяем шаг}
x:=x0; {Задаем начальные значения}
y:=y0;
y1 := y0;
i:=0;
.................
Напряжение в электрической цепи описывается дифференциальным уравнением с начальным условием:
Написать программу, которая определит количество теплоты, выделяющегося на единичном сопротивлении за единицу времени. Количество теплоты определяется по формуле: . Дифференциальное уравнение решить методом Рунге-Кутта четвертого порядка с точностью 10-4 (для достижения заданной точности использовать метод двойного пересчета). Интеграл вычислить по формуле Симпсона с шагом 0.1. Для нахождения значений функции в промежуточных узлах применить линейную интерполяцию. Вывести решение дифференциального уравнения, результаты интерполяции и количество теплоты.
Теоретическая часть:
Метод Рунге-Кутта
Обыкновенные дифференциальные уравнения (ОДУ) широко используются для математического моделирования процессов и явлений в различных областях науки и техники. Переходные процессы в радиотехнике, кинетика химических реакций, динамика биологических популяций, движение космических объектов, модели экономического развития исследуются с помощью ОДУ.
В дифференциальное уравнение 1-го порядка в качестве неизвестных величин входят функция y(x) и ее первая производная по аргументу x
( x, y, y1)=0. (1)
Уравнение (1) имеет бесконечное множество решений. Единственные решения выделяют с помощью дополнительных условий, которым должны удовлетворять искомые решения. В зависимости от вида таких условий рассматривают три типа задач, для которых доказано существование и единственность решений.
Первый тип, рассматриваемый в данной курсовой, – это задачи Коши, или задачи с начальными условиями. Для таких задач кроме исходного уравнения (1), в некоторой точке xo должны быть заданы начальные условия, т.е. значения функции y(x)
....................
Численное интегрирование. Формула Симпсона.
Численное интегрирование состоит в нахождении интеграла от непрерывной функции по квадратной формуле:
где коэффициенты - действительные числа и узлы принадлежат
i=1, 2, ... , n. Вид суммы
определяет метод численного
............
Практическая часть:
Листинг программы с комментариями
PROGRAM kursovaya; {название программы}
uses crt; {подключаем модуль ctr}
const epsilon=0.0001; {Заданная точность метода Рунге-Кутта}
{заданная правая часть дифференциального уравнения}
function f(x,y:real):real;
begin {начало}
f:=cos(4*x+y)+3*(x-y); {выражение по которому считаем}
end; {конец}
{Функция решения дифференциального уравнения методом Рунге-Кутта 4-го порядка с оценкой погрешности методом двойной прогонки
x0,y0 - начальные условия
..................
function Runge_Kutt(x0,y0:real;x1:real;N_init:integer;var X_out,Y_out:array of real):integer; {создание функции}
var {объявление переменных}
i : Integer;
h,x,y: Double;
y1 : Double;
k1 : Double; {присвоение переменным типа}
k2 : Double;
k3 : Double;
{Используются для хранение данных, полученных на предыдущем шаге расчета}
X_in,Y_in:array[0..100] of real; {массив}
eps:real;
N:integer;
Begin {начало}
for i:=0 to 100 do
begin {начало}
X_in[i]:=0;
Y_in[i]:=0;
end; {конец}
N:=N_init;
Repeat {повтор}
h := (x1-x0)/n; {определяем шаг}
x:=x0; {Задаем начальные значения}
y:=y0;
y1 := y0;
i:=0;
.................
Дополнительная информация
Оценка: "Хорошо"
Проверил: Галкина М. Ю.
Проверил: Галкина М. Ю.
Похожие материалы
Вычислительная математика. Курсовая работа. Вариант 7
Dmitry17
: 18 июня 2022
Вариант 7
Курсовая работа по дисциплине "Вычислительная математика" - Нахождение количества теплоты
!!Важно: перед покупкой проверяйте соответствие заданий на скриншотах у лота с теми, что выдал преподаватель.
Язык реализации программ: Dart.
В архиве:
- исходный код программы с комментариями
- инструкция по запуску
- отчёты
400 руб.
Вычислительная математика. Курсовая работа. Вариант №7
Damovoy
: 24 декабря 2020
Задание на курсовую работу
Напряжение в электрической цепи описывается дифференциальным уравнением с начальным условием.
1. Найти аналитически интервал изоляции положительного корня заданного нелинейного уравнения, вычислив производную левой части уравнения и составив таблицу знаков левой части уравнения на всей числовой оси.
2. Написать программу, которая:
а) находит k – наименьший положительный корень заданного нелинейного уравнения из найденного в пункте 1 интервала изоляции с точностью 0.00
400 руб.
Вычислительная математика. Курсовая работа. Вариант 7
Nikis
: 31 октября 2011
Напряжение в электрической цепи описывается дифференциальным уравнением с начальным условием:
Написать программу, которая определит количество теплоты, выделяющегося на единичном сопротивлении за единицу времени. Количество теплоты определяется по формуле: . Дифференциальное уравнение решить методом Рунге-Кутта четвертого порядка с точностью (для достижения заданной точности использовать метод двойного пересчета). Интеграл вычислить по формуле Симпсона с шагом 0.1. Для нахождения значений фун
150 руб.
СибГУТИ. Вычислительная математика. Курсовая работа. 4 вариант
РешуВашуРаботу
: 3 октября 2011
СОДЕРЖАНИЕ
. ЗАДАНИЕ 3
2. ОПИСАНИЕ АЛГОРИТМА РЕШЕНИЯ 3
2.1. Метод Рунге-Кутта четвертого порядка для решения уравнения первого порядка. 4
2.2. Оценка погрешности методом двойного пересчета 5
2.3. Формула Симпсона 6
2.4. Кусочно-линейная интерполяция 6
3. ИСХОДНЫЙ МОДУЛЬ ПРОГРАММЫ 7
4. РЕЗУЛЬТАТЫ РАБОТЫ ПРОГРАММЫ 10
Написать программу, которая определит количество теплоты, выделяющегося на единичном сопротивлении за единицу времени.
Количество теплоты определяется по формуле: . Дифференциальное
500 руб.
КУРСОВАЯ РАБОТА по дисциплине «Вычислительная математика». Вариант №7.
ДО Сибгути
: 4 февраля 2016
Напряжение в электрической цепи описывается дифференциальным уравнением с начальным условием:
Написать программу, которая определит количество теплоты, выделяющегося на единичном сопротивлении за единицу времени. Количество теплоты определяется по формуле: . Дифференциальное уравнение решить методов Рунге-Кутта четвертого порядка с точностью (для достижения заданной точности использовать метод двойного пересчета). Интеграл вычислить по формуле Симпсона с шагом 0.1. Для нахождения значений фун
100 руб.
Курсовая работа по дисциплине. Вычислительная математика. Вариант №7
Jack
: 28 ноября 2014
Написать программу, которая определит количество теплоты, выделяющегося на единичном сопротивлении за единицу времени.
Дифференциальное уравнение решить методом Рунге-Кутта четвертого порядка с точностью 10^(-4) (для достижения заданной точности использовать метод двойного пересчета). Интеграл вычислить по формуле Симпсона с шагом 0.1. Для нахождения значений функции в промежуточных узлах применить линейную интерполяцию. Вывести решение дифференциального уравнения, результаты интерполяции и
650 руб.
Курсовая работа по дисциплине: Вычислительная математика. Вариант №7
GTV8
: 9 сентября 2012
Напряжение в электрической цепи описывается дифференциальным уравнением с начальным условием:
Написать программу, которая определит количество теплоты, выделяющегося на единичном сопротивлении за единицу времени. Количество теплоты определяется по формуле:
Дифференциальное уравнение решить методом Рунге-Кутта четвертого порядка с точностью 10-4 (для достижения заданной точности использовать метод двойного пересчета). Интеграл вычислить по формуле Симпсона с шагом 0.1. Для нахождения значений фун
150 руб.
Лабораторная работа №4. Вычислительная математика. Вариант №7. ДО СибГУТИ.
Olya
: 9 января 2018
Задание:
Известно, что функция удовлетворяет условию при любом x. Измерительный прибор позволяет находить значения с точностью 0.0001. Найти наименьшую погрешность, с которой можно найти по приближенной формуле: . Рассчитать шаг для построения таблицы значений функции, которая позволит вычислить значения с наименьшей погрешностью.
Составить программу, которая
1. Выводит таблицу значений функции с рассчитанным шагом h на интервале [c – h, c + 21h].
2. По составленной таблице вычисляет зна
200 руб.
Другие работы
Контрольная работа по дисциплине: Устройства оптоэлектроники. Вариант №16
Учеба "Под ключ"
: 7 января 2017
Номер варианта для решения первой и третьей задачи должен соответствовать последней цифре пароля, номер варианта при решении второй и четвертой задач должен соответствовать предпоследней цифре пароля.
Задача №1
Изобразить структуру фотоприемника. Изобразить ВАХ фотоприемника. Дать определение основным параметрам. Пояснить принцип работы фотоприемника.
Последняя цифра пароля: 6
Тип фотоприемника (ФП): Составной фототранзистор
Задача №2
Определить длинноволновую границу фотоэффекта Лгр и фоточув
350 руб.
Цифровые системы передачи (часть 2). Экзаменационная работа. Билет №4.
Mental03
: 14 ноября 2017
Экзаменационная работа по дисциплине Цифровые системы передачи. Билет 4.
Билет № 4
по дисциплине
«Цифровые системы передачи»
Дайте краткие ответы на поставленные вопросы.
1. В чем отличие процедур мультиплексирования и демультиплексирования в системах СЦИ и ПЦИ.
2. Приведите назначение TU, TUG, AU, AUG.
3. Для чего служит виртуальный контейнер VC 4 и какова его структура?
4. В какой части заголовка находится байт S1 и что он описывает?
5. В каком блоке формируется заголовок MSOH?
6. Как дол
Трактор гусеничный сельскохозяйственный тягового класса 4 на базе ВТ-150
proekt-sto
: 12 января 2017
Количество страниц в пояснительной записке – 169, рисунков – 33, листов графики – 10 .
Чертежи: гусеничный трактор Т150, движитель, гусеничная цепь, шарнир, тягово-сцепные качества, звено гусеничной цепи.
Цель работы: разработать конструкцию гусеничного движителя сельскохозяйственного трактора, позволяющую увеличить срок службы гусеничной цепи, ее надежность.
В данной работе приводится разработка конструкции гусеничного движителя сельскохозяйственного трактора на базе ВТ-150. Усовершенствовани
90 руб.
Подшипник - Вариант 17
.Инженер.
: 16 мая 2023
Ж.А. Пьянкова. Компьютерная графика. Построение трехмерных сборочных единиц в системе "Компас 3D". Вариант 17 - Подшипник. Сборочный чертеж. Модели. Деталирование.
Подшипник – опора валов и вращающихся осей. По типу трения различают подшипники качения и подшипники скольжения. В данном подшипнике скольжения вкладыш (2) для предотвращения сдвига закреплен на шрифте (6). Крышка (3) присоединяется к корпусу подшипника (1) болтом (4), двумя гайками (5). Вторая гайка служит гарантией от саморазвинчив
150 руб.