Курсовая работа. Вычислительная математика. Вариант №7. ДО СибГУТИ.

Цена:
300 руб.

Состав работы

material.view.file_icon
material.view.file_icon Курсовая работа по вычислительной математике.docx
material.view.file_icon KURSOV~1.EXE
material.view.file_icon kursovaya rabota.pas
material.view.file_icon REZULTAT.TXT
material.view.file_icon Курсовая работа по вычислительной математике.doc
Работа представляет собой rar архив с файлами (распаковать онлайн), которые открываются в программах:
  • Microsoft Word
  • Программа для просмотра текстовых файлов

Описание

Задание на курсовую работу

Напряжение в электрической цепи описывается дифференциальным уравнением с начальным условием:

Написать программу, которая определит количество теплоты, выделяющегося на единичном сопротивлении за единицу времени. Количество теплоты определяется по формуле: . Дифференциальное уравнение решить методом Рунге-Кутта четвертого порядка с точностью 10-4 (для достижения заданной точности использовать метод двойного пересчета). Интеграл вычислить по формуле Симпсона с шагом 0.1. Для нахождения значений функции в промежуточных узлах применить линейную интерполяцию. Вывести решение дифференциального уравнения, результаты интерполяции и количество теплоты.

Теоретическая часть:

Метод Рунге-Кутта
Обыкновенные дифференциальные уравнения (ОДУ) широко используются для математического моделирования процессов и явлений в различных областях науки и техники. Переходные процессы в радиотехнике, кинетика химических реакций, динамика биологических популяций, движение космических объектов, модели экономического развития исследуются с помощью ОДУ.
В дифференциальное уравнение 1-го порядка в качестве неизвестных величин входят функция y(x) и ее первая производная по аргументу x
( x, y, y1)=0. (1)
Уравнение (1) имеет бесконечное множество решений. Единственные решения выделяют с помощью дополнительных условий, которым должны удовлетворять искомые решения. В зависимости от вида таких условий рассматривают три типа задач, для которых доказано существование и единственность решений.
Первый тип, рассматриваемый в данной курсовой, – это задачи Коши, или задачи с начальными условиями. Для таких задач кроме исходного уравнения (1), в некоторой точке xo должны быть заданы начальные условия, т.е. значения функции y(x)
....................

Численное интегрирование. Формула Симпсона.

Численное интегрирование состоит в нахождении интеграла от непрерывной функции по квадратной формуле:

где коэффициенты - действительные числа и узлы принадлежат
i=1, 2, ... , n. Вид суммы

определяет метод численного
............

Практическая часть:

Листинг программы с комментариями
PROGRAM kursovaya; {название программы}
uses crt; {подключаем модуль ctr}
const epsilon=0.0001; {Заданная точность метода Рунге-Кутта}

{заданная правая часть дифференциального уравнения}
function f(x,y:real):real;
begin {начало}
f:=cos(4*x+y)+3*(x-y); {выражение по которому считаем}
end; {конец}
{Функция решения дифференциального уравнения методом Рунге-Кутта 4-го порядка с оценкой погрешности методом двойной прогонки
x0,y0 - начальные условия
..................

function Runge_Kutt(x0,y0:real;x1:real;N_init:integer;var X_out,Y_out:array of real):integer; {создание функции}
var {объявление переменных}
i : Integer;
h,x,y: Double;
y1 : Double;
k1 : Double;  {присвоение переменным типа}
k2 : Double;
k3 : Double;
{Используются для хранение данных, полученных на предыдущем шаге расчета}
X_in,Y_in:array[0..100] of real; {массив}
eps:real;
N:integer;
Begin {начало}
for i:=0 to 100 do
begin {начало}
X_in[i]:=0;
Y_in[i]:=0;
end; {конец}
N:=N_init;
Repeat {повтор}
h := (x1-x0)/n; {определяем шаг}
x:=x0; {Задаем начальные значения}
y:=y0;
y1 := y0;
i:=0;
.................

Дополнительная информация

Оценка: "Хорошо"
Проверил: Галкина М. Ю.
Вычислительная математика. Курсовая работа. Вариант 7
Вариант 7 Курсовая работа по дисциплине "Вычислительная математика" - Нахождение количества теплоты !!Важно: перед покупкой проверяйте соответствие заданий на скриншотах у лота с теми, что выдал преподаватель. Язык реализации программ: Dart. В архиве: - исходный код программы с комментариями - инструкция по запуску - отчёты
User Dmitry17 : 18 июня 2022
400 руб.
Вычислительная математика. Курсовая работа. Вариант 7
Вычислительная математика. Курсовая работа. Вариант №7
Задание на курсовую работу Напряжение в электрической цепи описывается дифференциальным уравнением с начальным условием. 1. Найти аналитически интервал изоляции положительного корня заданного нелинейного уравнения, вычислив производную левой части уравнения и составив таблицу знаков левой части уравнения на всей числовой оси. 2. Написать программу, которая: а) находит k – наименьший положительный корень заданного нелинейного уравнения из найденного в пункте 1 интервала изоляции с точностью 0.00
User Damovoy : 24 декабря 2020
400 руб.
Вычислительная математика. Курсовая работа. Вариант №7
Вычислительная математика. Курсовая работа. Вариант 7
Напряжение в электрической цепи описывается дифференциальным уравнением с начальным условием: Написать программу, которая определит количество теплоты, выделяющегося на единичном сопротивлении за единицу времени. Количество теплоты определяется по формуле: . Дифференциальное уравнение решить методом Рунге-Кутта четвертого порядка с точностью (для достижения заданной точности использовать метод двойного пересчета). Интеграл вычислить по формуле Симпсона с шагом 0.1. Для нахождения значений фун
User Nikis : 31 октября 2011
150 руб.
СибГУТИ. Вычислительная математика. Курсовая работа. 4 вариант
СОДЕРЖАНИЕ . ЗАДАНИЕ 3 2. ОПИСАНИЕ АЛГОРИТМА РЕШЕНИЯ 3 2.1. Метод Рунге-Кутта четвертого порядка для решения уравнения первого порядка. 4 2.2. Оценка погрешности методом двойного пересчета 5 2.3. Формула Симпсона 6 2.4. Кусочно-линейная интерполяция 6 3. ИСХОДНЫЙ МОДУЛЬ ПРОГРАММЫ 7 4. РЕЗУЛЬТАТЫ РАБОТЫ ПРОГРАММЫ 10 Написать программу, которая определит количество теплоты, выделяющегося на единичном сопротивлении за единицу времени. Количество теплоты определяется по формуле: . Дифференциальное
User РешуВашуРаботу : 3 октября 2011
500 руб.
КУРСОВАЯ РАБОТА по дисциплине «Вычислительная математика». Вариант №7.
Напряжение в электрической цепи описывается дифференциальным уравнением с начальным условием: Написать программу, которая определит количество теплоты, выделяющегося на единичном сопротивлении за единицу времени. Количество теплоты определяется по формуле: . Дифференциальное уравнение решить методов Рунге-Кутта четвертого порядка с точностью (для достижения заданной точности использовать метод двойного пересчета). Интеграл вычислить по формуле Симпсона с шагом 0.1. Для нахождения значений фун
User ДО Сибгути : 4 февраля 2016
100 руб.
КУРСОВАЯ РАБОТА по дисциплине «Вычислительная математика». Вариант №7. promo
Курсовая работа по дисциплине. Вычислительная математика. Вариант №7
Написать программу, которая определит количество теплоты, выделяющегося на единичном сопротивлении за единицу времени. Дифференциальное уравнение решить методом Рунге-Кутта четвертого порядка с точностью 10^(-4) (для достижения заданной точности использовать метод двойного пересчета). Интеграл вычислить по формуле Симпсона с шагом 0.1. Для нахождения значений функции в промежуточных узлах применить линейную интерполяцию. Вывести решение дифференциального уравнения, результаты интерполяции и
User Jack : 28 ноября 2014
650 руб.
Курсовая работа по дисциплине: Вычислительная математика. Вариант №7
Напряжение в электрической цепи описывается дифференциальным уравнением с начальным условием: Написать программу, которая определит количество теплоты, выделяющегося на единичном сопротивлении за единицу времени. Количество теплоты определяется по формуле: Дифференциальное уравнение решить методом Рунге-Кутта четвертого порядка с точностью 10-4 (для достижения заданной точности использовать метод двойного пересчета). Интеграл вычислить по формуле Симпсона с шагом 0.1. Для нахождения значений фун
User GTV8 : 9 сентября 2012
150 руб.
Лабораторная работа №4. Вычислительная математика. Вариант №7. ДО СибГУТИ.
Задание: Известно, что функция удовлетворяет условию при любом x. Измерительный прибор позволяет находить значения с точностью 0.0001. Найти наименьшую погрешность, с которой можно найти по приближенной формуле: . Рассчитать шаг для построения таблицы значений функции, которая позволит вычислить значения с наименьшей погрешностью. Составить программу, которая 1. Выводит таблицу значений функции с рассчитанным шагом h на интервале [c – h, c + 21h]. 2. По составленной таблице вычисляет зна
User Olya : 9 января 2018
200 руб.
Лабораторная работа №4. Вычислительная математика. Вариант №7. ДО СибГУТИ.
Контрольная работа по дисциплине: Устройства оптоэлектроники. Вариант №16
Номер варианта для решения первой и третьей задачи должен соответствовать последней цифре пароля, номер варианта при решении второй и четвертой задач должен соответствовать предпоследней цифре пароля. Задача №1 Изобразить структуру фотоприемника. Изобразить ВАХ фотоприемника. Дать определение основным параметрам. Пояснить принцип работы фотоприемника. Последняя цифра пароля: 6 Тип фотоприемника (ФП): Составной фототранзистор Задача №2 Определить длинноволновую границу фотоэффекта Лгр и фоточув
User Учеба "Под ключ" : 7 января 2017
350 руб.
promo
Цифровые системы передачи (часть 2). Экзаменационная работа. Билет №4.
Экзаменационная работа по дисциплине Цифровые системы передачи. Билет 4. Билет № 4 по дисциплине «Цифровые системы передачи» Дайте краткие ответы на поставленные вопросы. 1. В чем отличие процедур мультиплексирования и демультиплексирования в системах СЦИ и ПЦИ. 2. Приведите назначение TU, TUG, AU, AUG. 3. Для чего служит виртуальный контейнер VC 4 и какова его структура? 4. В какой части заголовка находится байт S1 и что он описывает? 5. В каком блоке формируется заголовок MSOH? 6. Как дол
User Mental03 : 14 ноября 2017
Трактор гусеничный сельскохозяйственный тягового класса 4 на базе ВТ-150
Количество страниц в пояснительной записке – 169, рисунков – 33, листов графики – 10 . Чертежи: гусеничный трактор Т150, движитель, гусеничная цепь, шарнир, тягово-сцепные качества, звено гусеничной цепи. Цель работы: разработать конструкцию гусеничного движителя сельскохозяйственного трактора, позволяющую увеличить срок службы гусеничной цепи, ее надежность. В данной работе приводится разработка конструкции гусеничного движителя сельскохозяйственного трактора на базе ВТ-150. Усовершенствовани
User proekt-sto : 12 января 2017
90 руб.
Трактор гусеничный сельскохозяйственный тягового класса 4 на базе ВТ-150
Подшипник - Вариант 17
Ж.А. Пьянкова. Компьютерная графика. Построение трехмерных сборочных единиц в системе "Компас 3D". Вариант 17 - Подшипник. Сборочный чертеж. Модели. Деталирование. Подшипник – опора валов и вращающихся осей. По типу трения различают подшипники качения и подшипники скольжения. В данном подшипнике скольжения вкладыш (2) для предотвращения сдвига закреплен на шрифте (6). Крышка (3) присоединяется к корпусу подшипника (1) болтом (4), двумя гайками (5). Вторая гайка служит гарантией от саморазвинчив
User .Инженер. : 16 мая 2023
150 руб.
Подшипник - Вариант 17 promo
up Наверх