Математический анализ. часть 2-я. 2-й семестр. 2-й вариант
Состав работы
|
|
|
|
Работа представляет собой rar архив с файлами (распаковать онлайн), которые открываются в программах:
- Microsoft Word
Описание
Вариант No 2
1. Вычислить несобственный интеграл или доказать его расходимость
2. Вычислить с помощью двойного интеграла объем тела, ограниченного указанными поверхностями
; ;
3. Вычислить криволинейный интеграл по координатам
,
где - дуга параболы от точки до точки .
4. Найти общее решение дифференциального уравнения первого порядка
5. Решить задачу Коши
,
1. Вычислить несобственный интеграл или доказать его расходимость
2. Вычислить с помощью двойного интеграла объем тела, ограниченного указанными поверхностями
; ;
3. Вычислить криволинейный интеграл по координатам
,
где - дуга параболы от точки до точки .
4. Найти общее решение дифференциального уравнения первого порядка
5. Решить задачу Коши
,
Похожие материалы
Математический анализ (часть 2-я). 2-й семестр. 10-й вариант
alexeysh2
: 29 февраля 2016
Дистанционное обучение
Дисциплина «Математический анализ». Часть 2.
Вариант № 0
1. Вычислить несобственный интеграл или доказать его расходимость
2. Вычислить с помощью двойного интеграла объем тела, ограниченного указанными поверхностями
3. Вычислить криволинейный интеграл по координатам
где - дуга параболы от точки до точки .
4. Найти общее решение дифференциального уравнения первого порядка
5. Решить задачу Коши
280 руб.
Математический анализ (часть 2-я). (2-й семестр)..9-й вариант
Legeoner13
: 2 января 2015
Задание 1
Вычислить несобственный интеграл или доказать его расходимость .
Задание 2
Вычислить с помощью двойного интеграла объем тела, ограниченного указанными поверхностями
Задание 3
Вычислить криволинейный интеграл по координатам , где L – часть дуги окружности , , лежащая в первом квадранте и «пробегаемая» против хода часовой стрелки.
80 руб.
Математический анализ. 2-й семестр. 4-й вариант
Antipenko2016
: 15 мая 2016
3.Вычислить криволинейный интеграл по координатам
2.Вычислить с помощью двойного интеграла объем тела, ограниченного указанными поверхностями
1.Вычислить несобственный интеграл или доказать его расходимость
4.Найти общее решение дифференциального уравнения первого порядка
5.Решить задачу Коши
100 руб.
Математический анализ. 2-й семестр. 4-й вариант
kolganov91
: 3 сентября 2014
1. Даны функция z=z(x,y), точка A(x0;y0) и вектор a(ax;ay). Найти: 1) grad z в точке А. 2) производную в точке А по направлению вектора a.
2. Вычислить с помощью двойного интеграла в полярных координатах площадь фигуры, ограниченной кривой, заданной уравнением в декартовых координатах (a>0).
3. Вычислить с помощью тройного интеграла объем тела, ограниченного указанными поверхностями.
4. Даны векторное поле F=Xi+Yj+Zk — контур, ограничивающий s;и плоскость (p) Ax+By+Cz+D=0, которая совместно
75 руб.
Математический анализ. 1-й семестр. 10-й вариант
NataFka
: 14 октября 2013
Задача 1. Найти пределы функций:
Задача 2. Найти значение производных данных функций в точке x=0:
Задача 3. Провести исследование функций с указанием
а) области определения и точек разрыва; б) экстремумов; с) асимптот.
По полученным данным построить графики функций.
Задача 4. Найти неопределенные интегралы:
Задача 5. Вычислить площади областей, заключённых между линиями:
Рецензия:
существенных замечаний нет. Ваша работа зачтена.
100 руб.
Математический анализ (часть 2-я) Контрольная работа. 2-й семестр
Uiktor
: 26 марта 2016
1. Вычислить несобственный интеграл или доказать его расходимость
2. Вычислить с помощью двойного интеграла объем тела, ограниченного указанными поверхностями
; ;
3. Вычислить криволинейный интеграл по координатам
,
где - дуга параболы от точки до точки .
4. Найти общее решение дифференциального уравнения первого порядка
5. Решить задачу Коши
,
189 руб.
Математический анализ. 1-й семестр, вариант №1.
Alexandr1305
: 26 февраля 2019
Вариант No 1
1 Найти пределы
а) б) в) .
2 Найти производные данных функций
а) б)
в) г) .
3 Исследовать методами дифференциального исчисления функцию . Используя результаты исследования, построить её график.
4 Дана функция . Найти все её частные производные второго порядка.
5 Найти неопределенные интегралы
а) б)
в) г) .
60 руб.
Математический анализ. 1-й семестр. Вариант №10
spectra
: 6 января 2014
Задача 1. Дана система трех линейных уравнений. Найти решение ее двумя способами: методом Крамера и методом Гаусса.
Варианты: (смотри некоторые на скриншотах)
Задача 2. Даны координаты вершин пирамиды А1А2А3А4. Найти:
длину ребра А1А2;
угол между ребрами А1А2 и А1А4;
площадь грани А1А2А3;
уравнение плоскости А1А2А3.
объём пирамиды А1А2А3А4.
Варианты:
2.1. А1 ( 1; -1; 2), А2 ( 1; 3; 0), А3 ( 3; 0; -2), А4 ( 5; -2; 1).
2.2. А1 ( 1; 8; 2), А2 ( 5; 2; 6), А3 ( 0; -1; -2), А
100 руб.
Другие работы
Вентиль угловой ПМИГ.ХХХХХХ.010 ЧЕРТЕЖ
coolns
: 13 декабря 2023
Вентиль угловой ПМИГ.ХХХХХХ.010
ПМИГ.ХХХХХХ.010 Вентиль угловой
Вентиль устройство для регулирования в трубопроводе пара, газа, воды или другой жидкости.
Вентиль состоит из корпуса 2, в резьбовом отверстии которого установлен шпиндель 3. На нижнем конце шпинделя при помощи резьбовой втулки 6 закреплен клапан 1, состоящий из двух деталей: металлической втулки и наплавленной резиновой прокладки. На верхнем конце шпинделя закреплен при помощи установочного винта 13 маховик 5. На корпусе 2 установл
600 руб.
Разработка коробки передач легкового автомобиля 1 класса
Рики-Тики-Та
: 29 апреля 2011
Содержание:
1 Анализ и обоснования параметров автомобиля.................................…...........2
1.1 Анализ автомобилей аналогов…………………………………...…………...2
1.2 Выбор основных параметров автомобиля...………………………..……......3
1.2.1 Описание кинематической схемы………………………………………….3
1.2.2 Выбор основных весовых и геометрических параметров...…….…….……………………………………………………….......3
1.2.3 Определение мощности двигателя и его внешне скоростной
55 руб.
Совершенствование ремонта электро-оборудования в_ооо «нива»
Рики-Тики-Та
: 6 января 2013
СОДЕРЖАНИЕ СТР.
ВВЕДЕНИЕ
1 КРАТКАЯ ПРИРОДНО–ЭКОНОМИЧЕСКАЯ ХАРАКТЕРИСТИКА ХОЗЯЙСТВА ООО «НИВА»
1.1 Местоположение, землепользование и климатические условия
1.2 Основные показатели хозяйственной деятельности ООО «Нива»
2 АНАЛИЗ ПРОИЗВОДСТВЕННОГО ПРОЦЕССА РЕМОНТА ЭЛЕТРООБОРУДОВАНИЯ В ООО «НИВА»
2.1 Анализ существующей базы для ремонта, эксплуатации и обслуживания электрооб
825 руб.
Алгебра и геометрия 10 вариант сибГУТИ
osmos1995
: 11 июня 2015
1. Решить систему уравнений методом Крамера и методом Гаусса
2. Для данной матрицы найти обратную матрицу
3. Даны векторы
Найти:
a) угол между векторами и ;
b) проекцию вектора на вектор ;
c) векторное произведение ;
d) площадь треугольника, построенного на векторах .
4. Даны координаты вершин треугольника
a) составить уравнение стороны АВ
b) составить уравнение высоты АD
c) найти длину медианы ВЕ
d) найти точку пересечения высот треугольника АВС.
5. Даны координаты вершин пи
125 руб.