Математический анализ. часть 2-я. 2-й семестр. 2-й вариант
Состав работы
|
|
|
|
Работа представляет собой rar архив с файлами (распаковать онлайн), которые открываются в программах:
- Microsoft Word
Описание
Вариант No 2
1. Вычислить несобственный интеграл или доказать его расходимость
2. Вычислить с помощью двойного интеграла объем тела, ограниченного указанными поверхностями
; ;
3. Вычислить криволинейный интеграл по координатам
,
где - дуга параболы от точки до точки .
4. Найти общее решение дифференциального уравнения первого порядка
5. Решить задачу Коши
,
1. Вычислить несобственный интеграл или доказать его расходимость
2. Вычислить с помощью двойного интеграла объем тела, ограниченного указанными поверхностями
; ;
3. Вычислить криволинейный интеграл по координатам
,
где - дуга параболы от точки до точки .
4. Найти общее решение дифференциального уравнения первого порядка
5. Решить задачу Коши
,
Похожие материалы
Математический анализ (часть 2-я). 2-й семестр. 10-й вариант
alexeysh2
: 29 февраля 2016
Дистанционное обучение
Дисциплина «Математический анализ». Часть 2.
Вариант № 0
1. Вычислить несобственный интеграл или доказать его расходимость
2. Вычислить с помощью двойного интеграла объем тела, ограниченного указанными поверхностями
3. Вычислить криволинейный интеграл по координатам
где - дуга параболы от точки до точки .
4. Найти общее решение дифференциального уравнения первого порядка
5. Решить задачу Коши
280 руб.
Математический анализ (часть 2-я). (2-й семестр)..9-й вариант
Legeoner13
: 2 января 2015
Задание 1
Вычислить несобственный интеграл или доказать его расходимость .
Задание 2
Вычислить с помощью двойного интеграла объем тела, ограниченного указанными поверхностями
Задание 3
Вычислить криволинейный интеграл по координатам , где L – часть дуги окружности , , лежащая в первом квадранте и «пробегаемая» против хода часовой стрелки.
80 руб.
Математический анализ. 2-й семестр. 4-й вариант
Antipenko2016
: 15 мая 2016
3.Вычислить криволинейный интеграл по координатам
2.Вычислить с помощью двойного интеграла объем тела, ограниченного указанными поверхностями
1.Вычислить несобственный интеграл или доказать его расходимость
4.Найти общее решение дифференциального уравнения первого порядка
5.Решить задачу Коши
100 руб.
Математический анализ. 2-й семестр. 4-й вариант
kolganov91
: 3 сентября 2014
1. Даны функция z=z(x,y), точка A(x0;y0) и вектор a(ax;ay). Найти: 1) grad z в точке А. 2) производную в точке А по направлению вектора a.
2. Вычислить с помощью двойного интеграла в полярных координатах площадь фигуры, ограниченной кривой, заданной уравнением в декартовых координатах (a>0).
3. Вычислить с помощью тройного интеграла объем тела, ограниченного указанными поверхностями.
4. Даны векторное поле F=Xi+Yj+Zk — контур, ограничивающий s;и плоскость (p) Ax+By+Cz+D=0, которая совместно
75 руб.
Математический анализ. 1-й семестр. 10-й вариант
NataFka
: 14 октября 2013
Задача 1. Найти пределы функций:
Задача 2. Найти значение производных данных функций в точке x=0:
Задача 3. Провести исследование функций с указанием
а) области определения и точек разрыва; б) экстремумов; с) асимптот.
По полученным данным построить графики функций.
Задача 4. Найти неопределенные интегралы:
Задача 5. Вычислить площади областей, заключённых между линиями:
Рецензия:
существенных замечаний нет. Ваша работа зачтена.
100 руб.
Математический анализ (часть 2-я) Контрольная работа. 2-й семестр
Uiktor
: 26 марта 2016
1. Вычислить несобственный интеграл или доказать его расходимость
2. Вычислить с помощью двойного интеграла объем тела, ограниченного указанными поверхностями
; ;
3. Вычислить криволинейный интеграл по координатам
,
где - дуга параболы от точки до точки .
4. Найти общее решение дифференциального уравнения первого порядка
5. Решить задачу Коши
,
189 руб.
Математический анализ. 1-й семестр, вариант №1.
Alexandr1305
: 26 февраля 2019
Вариант No 1
1 Найти пределы
а) б) в) .
2 Найти производные данных функций
а) б)
в) г) .
3 Исследовать методами дифференциального исчисления функцию . Используя результаты исследования, построить её график.
4 Дана функция . Найти все её частные производные второго порядка.
5 Найти неопределенные интегралы
а) б)
в) г) .
60 руб.
Математический анализ. 1-й семестр. Вариант №10
spectra
: 6 января 2014
Задача 1. Дана система трех линейных уравнений. Найти решение ее двумя способами: методом Крамера и методом Гаусса.
Варианты: (смотри некоторые на скриншотах)
Задача 2. Даны координаты вершин пирамиды А1А2А3А4. Найти:
длину ребра А1А2;
угол между ребрами А1А2 и А1А4;
площадь грани А1А2А3;
уравнение плоскости А1А2А3.
объём пирамиды А1А2А3А4.
Варианты:
2.1. А1 ( 1; -1; 2), А2 ( 1; 3; 0), А3 ( 3; 0; -2), А4 ( 5; -2; 1).
2.2. А1 ( 1; 8; 2), А2 ( 5; 2; 6), А3 ( 0; -1; -2), А
100 руб.
Другие работы
Проведение графического анализа макроэкономических показателей системы национальных счетов
Qiwir
: 17 ноября 2013
СОДЕРЖАНИЕ
ВВЕДЕНИЕ 4
1 СИСТЕМА НАЦИОНАЛЬНЫХ СЧЕТОВ 6
1.1 Основные понятия СНС. Общие положения 6
1.2 Система макроэкономических показателей 7
2 ГРАФИЧЕСКОЕ ИЗОБРАЖЕНИЕ СТАТИСТИЧЕСКИХ ДАННЫХ 10
2.1 Понятие о статистическом графике 10
2.2 Виды статистических графиков 12
2.3 Пакеты обработки статистических данных. Программа STATISTICA 14
3 ГРАФИЧЕСКИЙ АНАЛИЗ МАКРОЭКОНОМИЧЕСКИХ ПОКАЗАТЕЛЕЙ CНС В STATISTICA 16
ЗАКЛЮЧЕНИЕ 21
СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ 22
ПРИЛОЖЕНИЕ А. МАТРИЦА ГРАФИК
10 руб.
Гидравлика Задача 5.30
Z24
: 11 декабря 2025
Найти объём воды V, вытесненной баржей ёмкостью Vб = 10000 м³, груженой нефтью с плотностью ρн = 900 кг/м³. На сколько изменится осадка баржи, если ее загрузить легкой нефтью (ρн = 780 кг/м³)?
150 руб.
Прикладная механика жидкости и газа ТОГУ Задача Д3
Z24
: 22 октября 2025
Для размыва грунта в котловане применяется гидромонитор (рис.1). Диаметр выходного отверстия сопла d=0,06 м, диаметр трубопровода D=0,3 м, давление в трубопроводе рм=794,6 кПа. Определить скорость истечения воды и расход. Гидравлическими потерями пренебречь.
160 руб.
Зачет по дисциплине: Теоретические основы распределенных вычислительных систем. Билет №29
IT-STUDHELP
: 17 мая 2021
Билет № 29
9) События описываемой модели могут представляться в сети Петри:
1. местами
2. переходами
3. местами и переходами
11) частичный связный граф в виде дерева минимального веса, множество вершин которого содержит выделенное множество вершин исходного графа, называется:
1. минимальным остовным деревом
2. остовным деревом
3. деревом Штейнера
25) В задаче читатели-писатели, если читатель хочет получить доступ к ресурсу, который уже занят писателем, он
1. может немедленно захватить этот
300 руб.