Курсовая работа по дисциплине: Вычислительная математика. Вариант №9
Состав работы
|
|
|
|
|
|
|
|
|
|
Работа представляет собой rar архив с файлами (распаковать онлайн), которые открываются в программах:
- Microsoft Word
Описание
Задание к работе:
Напряжение в электрической цепи описывается дифференциальным уравнением с начальным условием.
1. Найти аналитически интервал изоляции положительного корня заданного нелинейного уравнения, вычислив производную левой части уравнения и составив таблицу знаков левой части уравнения на всей числовой оси.
2. Написать программу, которая:
а) находит k – наименьший положительный корень заданного нелинейного уравнения из найденного в пункте 1 интервала изоляции с точностью 0.001 методом: деления пополам (если Ваша фамилия начинается на гласную букву), хорд (если Ваша фамилия начинается на согласную букву);
б) решает дифференциальное уравнение методом Рунге-Кутта четвертого порядка с точностью 10-4 на интервале [0;2] (для достижения заданной точности использовать метод двойного пересчета, начальный шаг решения взять равным 1);
в) с помощью линейной интерполяции по найденному в пункте б) решению дифференциального уравнения находит приближенные значения функции в точках ;
г) определяет количество теплоты , выделяющегося на единичном сопротивлении за 2 единицы времени, методом: Симпсона (если Ваше имя начинается на гласную букву), трапеций (если Ваше имя начинается на гласную букву) с шагом 0.01.
3. Программа должна выводить:
а) найденное приближенное значение k и количество итераций, которое потребовалось для достижения заданной точности;
б) решение дифференциального уравнения на интервале [0;2] с заданной точностью (выводить следует в 2 столбика: значениеxи соответствующее ему значение y);
в) результаты линейной интерполяции в точках (выводить следует в 2 столбика: значение xiи соответствующее ему значение yi);
г) количество теплоты Q.
4. Ответить на вопросы для защиты курсовой работы.
Вариант выбирается по последней цифре зачетной книжки.
Вариант 9
,
где k – наименьший положительный корень уравнения
Вопросы для защиты: 5, 6, 10, 14.
Напряжение в электрической цепи описывается дифференциальным уравнением с начальным условием.
1. Найти аналитически интервал изоляции положительного корня заданного нелинейного уравнения, вычислив производную левой части уравнения и составив таблицу знаков левой части уравнения на всей числовой оси.
2. Написать программу, которая:
а) находит k – наименьший положительный корень заданного нелинейного уравнения из найденного в пункте 1 интервала изоляции с точностью 0.001 методом: деления пополам (если Ваша фамилия начинается на гласную букву), хорд (если Ваша фамилия начинается на согласную букву);
б) решает дифференциальное уравнение методом Рунге-Кутта четвертого порядка с точностью 10-4 на интервале [0;2] (для достижения заданной точности использовать метод двойного пересчета, начальный шаг решения взять равным 1);
в) с помощью линейной интерполяции по найденному в пункте б) решению дифференциального уравнения находит приближенные значения функции в точках ;
г) определяет количество теплоты , выделяющегося на единичном сопротивлении за 2 единицы времени, методом: Симпсона (если Ваше имя начинается на гласную букву), трапеций (если Ваше имя начинается на гласную букву) с шагом 0.01.
3. Программа должна выводить:
а) найденное приближенное значение k и количество итераций, которое потребовалось для достижения заданной точности;
б) решение дифференциального уравнения на интервале [0;2] с заданной точностью (выводить следует в 2 столбика: значениеxи соответствующее ему значение y);
в) результаты линейной интерполяции в точках (выводить следует в 2 столбика: значение xiи соответствующее ему значение yi);
г) количество теплоты Q.
4. Ответить на вопросы для защиты курсовой работы.
Вариант выбирается по последней цифре зачетной книжки.
Вариант 9
,
где k – наименьший положительный корень уравнения
Вопросы для защиты: 5, 6, 10, 14.
Дополнительная информация
Проверил: Галкина М.Ю.
2019 год.
2019 год.
Похожие материалы
Курсовая работа по дисциплине: Вычислительная математика. Вариант №9.
ДО Сибгути
: 11 сентября 2016
Напряжение в электрической цепи описывается дифференциальным уравнением с начальным условием:
Написать программу, которая определит количество теплоты, выделяющегося на единичном сопротивлении за единицу времени. Количество теплоты определяется по формуле:
Дифференциальное уравнение решить методов Рунге-Кутта четвертого порядка с точностью 10-4 (для достижения заданной точности использовать метод двойного пересчета). Интеграл вычислить по формуле Симпсона с шагом 0.1. Для нахождения значени
150 руб.
Курсовая работа по дисциплине «Вычислительная математика» Вариант №9
dubhe
: 19 февраля 2015
Напряжение в электрической цепи описывается дифференциальным уравнением с начальным условием
Написать программу, которая определит количество теплоты, выделяющегося на единичном сопротивлении за единицу времени. Количество теплоты определяется по формуле: . Дифференциальное уравнение решить методов Рунге-Кутта четвертого порядка с точностью 10-4 (для достижения заданной точности использовать метод двойного пересчета). Интеграл вычислить по формуле Симпсона с шагом 0.1. Для нахождения значений ф
300 руб.
Вычислительная математика Вариант 9
Владислав161
: 19 июня 2022
Напряжение в электрической цепи описывается дифференциальным уравнением с начальным условием.
1. Найти аналитически интервал изоляции положительного корня заданного нелинейного уравнения, вычислив производную левой части уравнения и составив таблицу знаков левой части уравнения на всей числовой оси.
2. Написать программу, которая:
а) находит k – наименьший положительный корень заданного нелинейного уравнения из найденного в пункте 1 интервала изоляции с точностью 0.001 методом: деления пополам (
300 руб.
Вычислительная математика. ВАРИАНТ №9
DArt
: 3 ноября 2021
Задание на курсовую работу
Напряжение в электрической цепи описывается дифференциальным уравнением с начальным условием.
1. Найти аналитически интервал изоляции положительного корня заданного нелинейного уравнения, вычислив производную левой части уравнения и составив таблицу знаков левой части уравнения на всей числовой оси.
2. Написать программу, которая:
а) находит k – наименьший положительный корень заданного нелинейного уравнения из найденного в пункте 1 интервала изоляции с точностью 0.00
150 руб.
Курсовая работа по дисциплине Вычислительная математика
aker
: 26 апреля 2021
Курсовая работа по дисциплине Вычислительная математика Вариант 1
400 руб.
КУРСОВАЯ РАБОТА по дисциплине «Вычислительная математика»
vohmin
: 3 июня 2018
Задание:
Напряжение в электрической цепи описывается дифференциальным уравнением с начальным условием:
Написать программу, которая определит количество теплоты, выделяющегося на единичном сопротивлении за единицу времени. Количество теплоты определяется по формуле:
Дифференциальное уравнение решить методом Рунге-Кутта четвертого порядка с точностью 10-4 (для достижения заданной точности использовать метод двойного пересчета). Интеграл вычислить по формуле Симпсона с шагом 0.1. Для нахождени
50 руб.
Курсовая работа по дисциплине «Вычислительная математика»
m9c1k
: 24 октября 2010
Курсовая работа
по дисциплине
«Вычислительная математика»
Задание на курсовую работу
Напряжение в электрической цепи описывается дифференциальным уравнением с начальным условием
Написать программу, которая определит количество теплоты, выделяющегося на единичном сопротивлении за единицу времени. Количество теплоты определяется по формуле: . Дифференциальное уравнение решить методом Рунге-Кутта четвертого порядка с точностью 10-4 (для достижения заданной точности использовать метод двойного перес
320 руб.
Курсовая работа по дисциплине «Вычислительная математика»
m9c1k
: 22 июня 2010
Курсовая работа
по дисциплине
«Вычислительная математика»
Задание на курсовую работу
Напряжение в электрической цепи описывается дифференциальным уравнением с начальным условием:
Написать программу, которая определит количество теплоты, выделяющегося на единичном сопротивлении за единицу времени. Количество теплоты определяется по формуле: . Дифференциальное уравнение решить методом Рунге-Кутта четвертого порядка с точностью 10-4 (для достижения заданной точности использовать метод двойного пе
250 руб.
Другие работы
СИНЕРГИЯ Управление в социальной сфере Тест 100 балов 2023 год
Synergy2098
: 1 ноября 2023
СИНЕРГИЯ Управление в социальной сфере
МТИ МосТех МосАП МФПУ Синергия Тест оценка ОТЛИЧНО 2023 год
Задания
1. Средства Пенсионного фонда РФ формируются за счет …
средств работодателей
добровольных взносов физических лиц
средств международных финансовых организаций
2. Исследователем, предложившим понимать под качеством населения «целый комплекс медико-генетических и социально-психологических характеристик жизни людей, механизмы воспроизводства интеллектуального потенциала», является …
Х. Джонсо
228 руб.
Базы данных. 1 курс. 2 семестр.
ДО Сибгути
: 24 сентября 2013
Содержание
1. Формулировка задания (по варианту)
2. Краткое описание предметной области
3. Изображение сущностей и их атрибутов
4. ER-диаграмма
5. Таблицы базы данных с указанием первичных и внешних ключей
1. Формулировка задания (по варианту)
Разработать базу данных «Библиотека». База данных должна содержать сведения о следующих объектах:
• Книжный фонд – название, автор(ы), год и место издания.
• Читатели – фамилия, телефон, адрес, номер читательского билета, дата регистрации, дата перерегис
100 руб.
Контрольная работа по дисциплине: Экономика отрасли инфокоммуникаций. Вариант 06. Год сдачи: 2023.
ksu0411
: 8 октября 2023
Работа выполнена в соответствии с требованиями на 18 страницах.
Содержание
Введение 3
1. Оценка эффективности использования ресурсов предприятия 4
1.1 Использование материальных ресурсов: основных производственных фондов (ОПФ) и оборотных средств (ОС) 4
1.2 Использование трудовых ресурсов 8
2. Анализ себестоимости услуг связи 10
3. Анализ финансовых результатов деятельности предприятия 12
Заключение 16
Список использованной литературы 17
1. Оценка эффективности использования ресурсов предпри
700 руб.
Налоговые правонарушения, их признаки и состав
Slolka
: 7 января 2014
Содержание
Введение
1. Характеристика налоговых правонарушений.
1.1. Налоговые правонарушения и их признаки.
1.2. Виды и состав налоговых правонарушений.
1.3. Формы вины при совершении налоговых правонарушений. Обстоятельства, смягчающие и отягощающие вину за совершение налоговых правонарушений.
1.4. Ответственность за совершение налоговых правонарушений.
Заключение
Введение
«Платить налоги и умереть должен каждый»
Бенджамин Франклин (1706-1790)
американский учёный и политический деят
15 руб.