Дискретная математика. Лабораторная работа №4
Состав работы
|
|
|
|
|
|
|
|
|
|
Работа представляет собой rar архив с файлами (распаковать онлайн), которые открываются в программах:
- Microsoft Word
Описание
Лабораторная работа No 4 Генерация подмножеств
Задано целое положительное число n, которое представляет собой мощность некоторого множества. Требуется с минимальными трудозатратами генерировать все подмножества этого множества, для чего каждое последующее подмножество должно получаться из предыдущего путем добавления или удаления только одного элемента. Множество и все его подмножества представляются битовой шкалой. Для генерации использовать алгоритм построения бинарного кода Грея.
В качестве результата выводить построчно каждое из подмножеств (в виде битовой шкалы), сопровождая их порядковыми номерами. В случае большого количества результирующих строк (превышающего размер экрана) выполнять поэкранную выдачу, а также осуществлять их вывод в файл с выдачей на экран сообщения для пользователя – имя файла, его местонахождение.
Алгоритм построения бинарного кода Грея
Вход: n 3 0 – мощность множества.
Выход: последовательность кодов подмножеств B (битовая шкала).
1. Инициализация массива В и его выдача на печать.
2. В цикле по i (от 1 до 2 n –1):
а) Определение элемента для добавления или удаления: p:=Q(i);
б) Добавление или удаление элемента B[p]:=1–B[p];
в) Вывод очередного подмножества – массива B.
Функция Q(i) определяется как число, на единицу превышающее количество “2” в разложении числа i на множители. Очевидно, что для нечетных i значение этой функции равно 1, т.е. для нечетного i значение будет менять крайний правый бит шкалы (нумерация справа налево от 1), а для i, равных степени 2, будет “включаться” бит, соответствующий этой степени 2 (например, для 4 – 3-й бит, для 8 – 4-й бит, ...).
Задано целое положительное число n, которое представляет собой мощность некоторого множества. Требуется с минимальными трудозатратами генерировать все подмножества этого множества, для чего каждое последующее подмножество должно получаться из предыдущего путем добавления или удаления только одного элемента. Множество и все его подмножества представляются битовой шкалой. Для генерации использовать алгоритм построения бинарного кода Грея.
В качестве результата выводить построчно каждое из подмножеств (в виде битовой шкалы), сопровождая их порядковыми номерами. В случае большого количества результирующих строк (превышающего размер экрана) выполнять поэкранную выдачу, а также осуществлять их вывод в файл с выдачей на экран сообщения для пользователя – имя файла, его местонахождение.
Алгоритм построения бинарного кода Грея
Вход: n 3 0 – мощность множества.
Выход: последовательность кодов подмножеств B (битовая шкала).
1. Инициализация массива В и его выдача на печать.
2. В цикле по i (от 1 до 2 n –1):
а) Определение элемента для добавления или удаления: p:=Q(i);
б) Добавление или удаление элемента B[p]:=1–B[p];
в) Вывод очередного подмножества – массива B.
Функция Q(i) определяется как число, на единицу превышающее количество “2” в разложении числа i на множители. Очевидно, что для нечетных i значение этой функции равно 1, т.е. для нечетного i значение будет менять крайний правый бит шкалы (нумерация справа налево от 1), а для i, равных степени 2, будет “включаться” бит, соответствующий этой степени 2 (например, для 4 – 3-й бит, для 8 – 4-й бит, ...).
Дополнительная информация
Уважаемый слушатель, дистанционного обучения,
Оценена Ваша работа по предмету: Дискретная математика
Вид работы: Лабораторная работа 4
Оценка:Зачет
Дата оценки: 08.06.2016
Рецензия:Уважаемый
Бах Ольга Анатольевна
Оценена Ваша работа по предмету: Дискретная математика
Вид работы: Лабораторная работа 4
Оценка:Зачет
Дата оценки: 08.06.2016
Рецензия:Уважаемый
Бах Ольга Анатольевна
Похожие материалы
Дискретная математика. Лабораторная работа №4
sibguter
: 5 июня 2018
Тема: Генерация подмножеств
Задание
Задано целое положительное число n, которое представляет собой мощность некоторого множества. Требуется с минимальными трудозатратами генерировать все подмножества этого множества, для чего каждое последующее подмножество должно получаться из предыдущего путем добавления или удаления только одного элемента. Множество и все его подмножества представляются битовой шкалой. Для генерации использовать алгоритм построения бинарного кода Грея.
В качестве результата в
49 руб.
Дискретная математика. Лабораторная работа № 4
alexxxxxxxela
: 5 января 2014
Лабораторная работа № 4
Генерация подмножеств
Задано целое положительное число n, которое представляет собой мощность некоторого множества. Требуется с минимальными трудозатратами генерировать все подмножества этого множества, для чего каждое последующее подмножество должно получаться из предыдущего путем добавления или удаления только одного элемента. Множество и все его подмножества представляются битовой шкалой. Для генерации использовать алгоритм построения бинарного кода Грея.
В качестве р
70 руб.
Дискретная математика, Лабораторная работа №4
GTV8
: 10 сентября 2012
Задано целое положительное число n, которое представляет собой мощность некоторого множества. Требуется с минимальными трудозатратами генерировать все подмножества этого множества, для чего каждое последующее подмножество должно получаться из предыдущего путем добавления или удаления только одного элемента. Множество и все его подмножества представляются битовой шкалой. Для генерации использовать алгоритм построения бинарного кода Грея.
В качестве результата выводить построчно каждое из подмнож
250 руб.
Лабораторная работа № 4 по дискретной математике
migsvet
: 7 апреля 2012
Генерация подмножеств
Задано целое положительное число n, которое представляет собой мощность некоторого множества. Требуется с минимальными трудозатратами генерировать все подмножества этого множества, для чего каждое последующее подмножество должно получаться из предыдущего путем добавления или удаления только одного элемента. Множество и все его подмножества представляются битовой шкалой. Для генерации использовать алгоритм построения бинарного кода Грея.
В качестве результата выводить постро
100 руб.
Дискретная математика Лабораторная работа № 4
1231233
: 17 сентября 2010
Тема: Генерация подмножеств
Задание:
Задано целое положительное число n, которое представляет собой мощность некоторого множества. Требуется с минимальными трудозатратами генерировать все подмножества этого множества, для чего каждое последующее подмножество должно получаться из предыдущего путем добавления или удаления только одного элемента. Множество и все его подмножества представляются битовой шкалой. Для генерации использовать алгоритм построения бинарного кода Грея.
23 руб.
Лабораторная работа № 4 по дисциплине: Дискретная математика
IT-STUDHELP
: 29 января 2017
Лабораторная работа № 4 Генерация подмножеств
Задано целое положительное число n, которое представляет собой мощность некоторого множества. Требуется с минимальными трудозатратами генерировать все подмножества этого множества, для чего каждое последующее подмножество должно получаться из предыдущего путем добавления или удаления только одного элемента. Множество и все его подмножества представляются битовой шкалой. Для генерации использовать алгоритм построения бинарного кода Грея.
В качестве
48 руб.
Дискретная математика. Лабораторная работа №4. Все варианты
tpogih
: 15 января 2014
Лабораторная работа No 4 Генерация подмножеств
Задано целое положительное число n, которое представляет собой мощность некоторого множества. Требуется с минимальными трудозатратами генерировать все подмножества этого множества, для чего каждое последующее подмножество должно получаться из предыдущего путем добавления или удаления только одного элемента. Множество и все его подмножества представляются битовой шкалой. Для генерации использовать алгоритм построения бинарного кода Грея.
В качестве
30 руб.
Лабораторная работа №4 по предмету "Дискретная математика".
Greenberg
: 29 июля 2011
Лабораторная работа № 4 Генерация подмножеств.
Задано целое положительное число n, которое представляет собой мощность некоторого множества. Требуется с минимальными трудозатратами генерировать все подмножества этого множества, для чего каждое последующее подмножество должно получаться из предыдущего путем добавления или удаления только одного элемента. Множество и все его подмножества представляются битовой шкалой. Для генерации использовать алгоритм построения бинарного кода Грея.
В качестве
79 руб.
Другие работы
Лабораторная работа №2 по дисциплине: Направляющие системы электросвязи. Вариант №10
naXer22
: 20 декабря 2014
Тема: Исследование дисперсионных искажений импульсов в оптическом волокне
1. Цель работы
Целью работы является проведение компьютерного эксперимента по исследованию влияния составляющих дисперсии на временные параметры передаваемых оптических импульсов:
- модовой дисперсии ступенчатых оптических волокон;
- модовой дисперсии градиентных оптических волокон;
- материальной составляющей хроматической дисперсии;
- волноводной составляющей хроматической дисперсии;
- профильной составляющей хроматическ
150 руб.
Теория государства и права (темы 11-19 Итог) Тест 98 баллов 2025 год СИНЕРГИЯ
IT-STUDHELP
: 27 июня 2025
Оказываю помощь с прохождение теста и выполнением работ, подробнее:
WhatsApp - 79951302302
ego178@mail.ru
=====================================
СИНЕРГИЯ Теория государства и права (темы 11-19 Итог)
МТИ МосТех МосАП МФПУ Синергия Тест оценка ОТЛИЧНО (98 баллов)
2025 год
ВОПРОСЫ:
Тема 11. Норма права
Тема 12. Система права
Тема 13. Правовые семьи
Тема 14. Правоотношения
Тема 15. Реализация права
Тема 16. Толкование права
Тема 17. Правомерное поведение, правонарушение и юридическая ответственн
215 руб.
Маслоустановка центробежного насоса ЦНС-25-1400 Монтажный чертеж-Чертеж-Оборудование для добычи и подготовки нефти и газа-Курсовая работа-Дипломная работа
lesha.nakonechnyy.92@mail.ru
: 25 июля 2016
Маслоустановка центробежного насоса ЦНС-25-1400 Монтажный чертеж-(Формат Компас-CDW, Autocad-DWG, Adobe-PDF, Picture-Jpeg)-Чертеж-Оборудование для добычи и подготовки нефти и газа-Курсовая работа-Дипломная работа
186 руб.
Теплотехника Часть 1 Теплопередача Задача 25 Вариант 0
Z24
: 14 октября 2025
В рекуперативном прямоточном теплообменнике температура греющего и нагреваемого теплоносителей равна: а) на входе в теплообменник t′1=200 ºC, t′2=20 ºC; б) на выходе из теплообменника t″1, t″2. Расход греющего теплоносителя G1, теплоемкость с1=4,2 кДж/(кг·К). Площадь теплообменной поверхности теплообменника F=25 м². Определить средний коэффициент теплопередачи k при заданной схеме движения теплоносителей. На сколько процентов увеличится количество передаваемого тепла, если при неизменных темпера
180 руб.