Теория вероятности и математическая статистика. Вариант №9. 3-й семестр

Состав работы

material.view.file_icon BD0C8778-DDDE-4C2B-8C72-694A4DBB9CA8.docx
Работа представляет собой файл, который можно открыть в программе:
  • Microsoft Word

Описание

1. Десять томов сочинений Пушкина расположены в случайном порядке на двух полках по пять томов. Найти вероятность того, что первый и второй том окажутся на одной полке.


2. На склад поступают изделия, изготовленные на трех станках, среди них половина изготовлена на первом станке, треть на втором, остальные на третьем. Вероятность брака для изделий, изготовленных на первом станке 0,1, на втором – 0,2 и на третьем – 0,25. Случайно взятое изделие оказалось бракованным. Какова вероятность, что оно изготовлено на третьем станке?


3. В аэропорт прибывает в среднем 5 самолетов в час. Найти вероятность того, что за 10 минут аэропорт примет: а) один самолет; б) ни одного самолета.


4. Случайная величина X задана функцией распределения (интегральной функцией) F(x):



Требуется: а) найти дифференциальную функцию (плотность распределения вероятностей); б) найти математическое ожидание и дисперсию случайной величины; в) построить графики интегральной и дифференциальной функций.



5. Известны математическое ожидание a = 5 и среднее квадратичное отклонение s = 5 нормально распределенной случайной величины X. Найти вероятность попадания этой величины в заданный интервал (6;8).
Теория вероятности и математическая статистика. 4-й семестр
10.1. В каждой из двух урн содержится 6 черных и 4 белых шара. Из первой урны наудачу извлечен один шар и переложен во вторую. Найти вероятность того, что шар, извлеченный из второй урны, окажется черным. 10.2. В каждой из двух урн содержится 8 черных и 2 белых шара. Из второй урны наудачу извлечен один шар и переложен в первую. Найти вероятность того, что шар, извлеченный из первой урны, окажется черным. 10.3. Три стрелка произвели залп по цели. Вероятность поражения цели первым стрелком равна
User Темир : 23 ноября 2014
79 руб.
Теория вероятностей и математическая статистика. Вариант №9
Вариант №9 Задача 1. Вероятность появления поломок на каждой из 4 соединительных линий равна 0,25. Какова вероятность того, что хотя бы две линии исправны? Задача 2. В одной урне 4 белых шаров и 7 черных шаров, а в другой – 5 белых и 7 черных. Из первой урны случайным образом вынимают 2 шара и опускают во вторую урну. После этого из второй урны также случайно вынимают 4 шара. Найти вероятность того, что все шары, вынутые из второй урны, белые. Задача 3. В типографии имеется 5 печатных маши
User IT-STUDHELP : 8 июня 2021
500 руб.
Теория вероятностей и математическая статистика. Вариант №9 promo
Теория вероятностей и математическая статистика. Вариант: №9
10.9. Из аэровокзала отправились 2 автобуса-экспресса к трапам самолётов. Вероятность своевременного прибытия каждого автобуса в аэропорт равна 0,95. Найти вероятность того, что: а) оба автобуса придут вовремя; б) оба автобуса опоздают; в) только один автобус прибудет вовремя; г) хотя бы один автобус прибудет вовремя. Пусть А – своевременное прибытие первого автобуса P(A) = 0.95 B – своевременное прибытие второго P(B) = 0.95 Опоздание первого - Опоздание второго - а) оба прибудут вовремя
User Rufus : 11 октября 2017
100 руб.
Теория вероятности и математическая статистика. Вариант №9
Задача 10.9 Из аэровокзала отправились 2 автобуса-экспресса к трапам самолётов. Вероятность своевременного прибытия каждого автобуса в аэропорт равна 0,95. Найти вероятность того, что: а) оба автобуса придут вовремя; б) оба автобуса опоздают; в) только один автобус прибудет вовремя; г) хотя бы один автобус прибудет вовремя. Задача 11.9 Вероятность наступления события в каждом из независимых испытаний равна 0,8. Сколько нужно произвести испытаний, чтобы с вероятностью 0,95 можно было ожид
User Mixhot : 29 апреля 2014
40 руб.
Контрольная работа по дисциплине: Теория вероятности и математическая статистика .3-й семестр. Вариант 9.
Задача 10.9 Из аэровокзала отправились 2 автобуса-экспресса к трапам самолётов. Вероятность своевременного прибытия каждого автобуса в аэропорт равна 0,95. Найти вероятность того, что: а) оба автобуса придут вовремя; б) оба автобуса опоздают; в) только один автобус прибудет вовремя; г) хотя бы один автобус прибудет вовремя. Задача 11.9 Вероятность наступления события в каждом из независимых испытаний равна 0,8. Сколько нужно произвести испытаний, чтобы с вероятност
User 58197 : 22 сентября 2013
30 руб.
Дисциплина «Теория вероятностей и математическая статистика» Вариант № 9
1. Десять томов сочинений Пушкина расположены в случайном порядке на двух полках по пять томов. Найти вероятность того, что первый и второй том окажутся на одной полке. 2. На склад поступают изделия, изготовленные на трех станках, среди них половина изготовлена на первом станке, треть на втором, остальные на третьем. Вероятность брака для изделий, изготовленных на первом станке 0,1, на втором – 0,2 и на третьем – 0,25. Случайно взятое изделие оказалось бракованным. Какова вероятность, что оно
User andreyan : 20 января 2017
50 руб.
Теория вероятностей и математическая статистика (2-й семестр) 9-й вариант
10.9 11.9 Вероятность наступления события в каждом из независимых испытаний равна 0,8... 12.9 Требуется найти: а) математическое ожидание; б) дисперсию; в) среднее квадратическое отклонение дискретной случайной величины X.... 13.9 Заданы математическое ожидание а и среднее квадратическое отклонение s нормально распределённой случайной величины X.....
User Legeoner13 : 2 января 2015
100 руб.
3-й семестр ДО. «Теория вероятностей и математическая статистика». Экзамен В3
Дистанционное обучение Дисциплина «Теория вероятностей и МС» Билет № 6 1. Непрерывная случайная величина и её характеристики. Плотность и функция распределения и их свойства. Равномерное распределение 2. Из урны, где находятся 7 белых и 8 черных шаров, случайно вытащены 10 шаров. Какова вероятность того, что среди них будет 5 черных шаров? 3. Дискретная случайная величина имеет следующий ряд распределения Х 10 20 30 40 50 р a 2a 0,35 0,21 а Найти величину a, математическое ожидание и средн
User Мария60 : 11 февраля 2019
400 руб.
3-й семестр ДО. «Теория вероятностей и математическая статистика». Экзамен В3
ММА/ИДО Иностранный язык в профессиональной сфере (ЛТМ) Тест 20 из 20 баллов 2024 год
ММА/ИДО Иностранный язык в профессиональной сфере (ЛТМ) Тест 20 из 20 баллов 2024 год Московская международная академия Институт дистанционного образования Тест оценка ОТЛИЧНО 2024 год Ответы на 20 вопросов Результат – 100 баллов С вопросами вы можете ознакомиться до покупки ВОПРОСЫ: 1. We have … to an agreement 2. Our senses are … a great role in non-verbal communication 3. Saving time at business communication leads to … results in work 4. Conducting negotiations with foreigners we shoul
User mosintacd : 28 июня 2024
150 руб.
promo
Задание №2. Методы управления образовательными учреждениями
Практическое задание 2 Задание 1. Опишите по одному примеру использования каждого из методов управления в Вашей профессиональной деятельности. Задание 2. Приняв на работу нового сотрудника, Вы надеялись на более эффективную работу, но в результате разочарованы, так как он не соответствует одному из важнейших качеств менеджера - самодисциплине. Он не обязателен, не собран, не умеет отказывать и т.д.. Но, тем не менее, он отличный профессионал в своей деятельности. Какими методами управления Вы во
User studypro : 13 октября 2016
200 руб.
Особенности бюджетного финансирования
Содержание: Введение Теоретические основы бюджетного финансирования Понятие и сущность бюджетного финансирования Характеристика основных форм бюджетного финансирования Анализ бюджетного финансирования образования Понятие и источники бюджетного финансирования образования Проблемы бюджетного финансирования образования Основные направления совершенствования бюджетного финансирования образования Заключение Список использованный литературы Цель курсовой работы – исследовать особенности бюджетного фин
User Aronitue9 : 24 августа 2012
20 руб.
Программирование (часть 1-я). Зачёт. Билет №2
ЗАЧЕТ по дисциплине “Программирование (часть 1)” Билет 2 Определить значение переменной y после работы следующего фрагмента программы: a = 3; b = 2 * a – 10; x = 0; y = 2 * b + a; if ( b > y ) or ( 2 * b < y + a ) ) then begin x = b – y; y = x + 4 end; if ( a + b < 0 ) and ( y + x > 2 ) ) then begin x = x + y; y = x – 2 end;
User sibsutisru : 3 сентября 2021
200 руб.
Программирование (часть 1-я). Зачёт. Билет №2
up Наверх