Алгоритмы и вычислительные методы оптимизации. Курсовой проект. Вариант №9.

Состав работы

material.view.file_icon
material.view.file_icon
material.view.file_icon Kr.cs
material.view.file_icon Kr.exe
material.view.file_icon System.ValueTuple.dll
material.view.file_icon КР.docx
Работа представляет собой rar архив с файлами (распаковать онлайн), которые открываются в программах:
  • Microsoft Word

Описание

ВНИМАНИЕ! В 2020 ГОДУ ЗАДАНИЕ ИЗМЕНИЛОСЬ!
ЭТО РЕШЕНИЕ НЕ ПОДХОДИТ ДЛЯ НОВОГО ЗАДАНИЯ,
ГДЕ ФУНКЦИЯ МИНИМИЗИРУЕТСЯ!
ПЕРЕДЕЛКА НЕ ОСУЩЕСТВЛЯЕТСЯ!


Перейти к канонической форме задачи линейного программирования.
Z(x_1,x_2 )=p_1*x_1+p_2*x_2→max
{█(a_1*x_1+a_2*x_2≥a@b_1*x_1+b_2*x_2≥b@c_1*x_1+c_2*x_2≥c@x_1;x_2≥0)
  Написать программу, решающую задачу линейного программирования в канонической форме симплекс-методом с выводом всех промежуточных симплексных таблиц.
 Решить исходную задачу графически и отметить на чертеже точки, соответствующие симплексным таблицам, полученным при выполнении программы из п.2.
 Составить двойственную задачу к исходной и найти ее решение на основании теоремы равновесия.
 Ответить на вопросы для защиты курсовой работы.
Вариант выбирается по последней цифре пароля.
Вариант 9 Z(x_1,x_2 )=4*x_1+5*x_2→max
{█(4*x_1+x_2≥9@〖3*x〗_1+2*x_2≥13@2*x_1+5*x_2≥16@x_1;x_2≥0)
Вопросы: 5,6,10,14

Дополнительная информация

Комментарии: Уважаемый студент, дистанционного обучения,
Оценена Ваша работа по предмету: Алгоритмы и вычислительные методы оптимизации
Вид работы: Курсовая работа
Оценка:Хорошо
Дата оценки: 01.01.2019
Рецензия:Уважаемый,
Галкина Марина Юрьевна
Алгоритмы и вычислительные методы оптимизации. Вариант №9
Язык программирования: Javascript Задание на курсовую работу Перейти к канонической форме задачи линейного программирования. {█(Z(x_1,x_2 )=p_1 x_1+p_2 x_2→min@a_1 x_1+a_2 x_2≥a@b_1 x_1+b_2 x_2≥b@c_1 x_1+c_2 x_2≥c@x_1;x_2≥0) Написать программу, решающую задачу линейного программирования в канонической форме симплекс-методом с выводом всех промежуточных симплексных таблиц. Решить исходную задачу графически и отметить на чертеже точки, соответствующие симплексным таблицам, полученным при вып
User IT-STUDHELP : 9 июля 2020
820 руб.
Алгоритмы и вычислительные методы оптимизации. Вариант №9
Алгоритмы и вычислительные методы оптимизации. Курсовой проект. Вариант №0.
Решение задачи линейного программирования, теория двойственности Присылаемый на проверку архив должен содержать 2 файла: файл отчета, содержащий титульный лист, условие задачи, формулы используемых методов, исходный текст программы (с указанием языка реализации), результаты работы программы (можно в виде скриншотов), ответы на вопросы для защиты; файл с исходным текстом программы (программу можно писать на любом языке программирования). Задание на курсовую работу 1 Перейти к канонической форме з
User Алексей134 : 5 марта 2021
100 руб.
Алгоритмы и вычислительные методы оптимизации. Курсовой проект. Вариант №7.
ВНИМАНИЕ! В 2020 ГОДУ ЗАДАНИЕ ИЗМЕНИЛОСЬ! ЭТО РЕШЕНИЕ НЕ ПОДХОДИТ ДЛЯ НОВОГО ЗАДАНИЯ, ГДЕ ФУНКЦИЯ МИНИМИЗИРУЕТСЯ! ПЕРЕДЕЛКА НЕ ОСУЩЕСТВЛЯЕТСЯ! Перейти к канонической форме задачи линейного программирования. Z(x_1,x_2 )=p_1*x_1+p_2*x_2→max {█(a_1*x_1+a_2*x_2≥a@b_1*x_1+b_2*x_2≥b@c_1*x_1+c_2*x_2≥c@x_1;x_2≥0) Написать программу, решающую задачу линейного программирования в канонической форме симплекс-методом с выводом всех промежуточных симплексных таблиц. Решить исходную задачу графически и
User sibguter : 27 декабря 2019
139 руб.
Алгоритмы и вычислительные методы оптимизации. Вариант 4 курсовой проект
Задание 1. Перейти к канонической форме задачи линейного программирования. 2. Написать программу, решающую задачу линейного программирования в канонической форме симплекс-методом с выводом всех промежуточных симплексных таблиц. 3. Решить исходную задачу графически и отметить на чертеже точки, соответствующие симплексным таблицам, полученным при выполнении программы из п.2. 4. Составить двойственную задачу к исходной и найти ее решение на основании теоремы равновесия. 5. Ответить на вопросы
User Михаил18 : 26 сентября 2019
100 руб.
Алгоритмы и вычислительные методы оптимизации. Вариант 4 курсовой проект
Алгоритмы и вычислительные методы оптимизации. Курсовой проект. Вариант №3.
ВНИМАНИЕ! В 2020 ГОДУ ЗАДАНИЕ ИЗМЕНИЛОСЬ! ЭТО РЕШЕНИЕ НЕ ПОДХОДИТ ДЛЯ НОВОГО ЗАДАНИЯ, ГДЕ ФУНКЦИЯ МИНИМИЗИРУЕТСЯ! ПЕРЕДЕЛКА НЕ ОСУЩЕСТВЛЯЕТСЯ! Перейти к канонической форме задачи линейного программирования. Z(x_1,x_2 )=p_1*x_1+p_2*x_2→max {█(a_1*x_1+a_2*x_2≥a@b_1*x_1+b_2*x_2≥b@c_1*x_1+c_2*x_2≥c@x_1;x_2≥0) Написать программу, решающую задачу линейного программирования в канонической форме симплекс-методом с выводом всех промежуточных симплексных таблиц. Решить исходную задачу графически и
User sibguter : 28 августа 2019
139 руб.
Алгоритмы и вычислительные методы оптимизации. Курсовой проект. Вариант №4.
ВНИМАНИЕ! В 2020 ГОДУ ЗАДАНИЕ ИЗМЕНИЛОСЬ! ЭТО РЕШЕНИЕ НЕ ПОДХОДИТ ДЛЯ НОВОГО ЗАДАНИЯ, ГДЕ ФУНКЦИЯ МИНИМИЗИРУЕТСЯ! ПЕРЕДЕЛКА НЕ ОСУЩЕСТВЛЯЕТСЯ! Перейти к канонической форме задачи линейного программирования. Z(x_1,x_2 )=p_1*x_1+p_2*x_2→max {█(a_1*x_1+a_2*x_2≥a@b_1*x_1+b_2*x_2≥b@c_1*x_1+c_2*x_2≥c@x_1;x_2≥0) Написать программу, решающую задачу линейного программирования в канонической форме симплекс-методом с выводом всех промежуточных симплексных таблиц. Решить исходную задачу графически и
User sibguter : 28 августа 2019
139 руб.
Алгоритмы и вычислительные методы оптимизации. Курсовой проект. Вариант №2.
ВНИМАНИЕ! В 2020 ГОДУ ЗАДАНИЕ ИЗМЕНИЛОСЬ! ЭТО РЕШЕНИЕ НЕ ПОДХОДИТ ДЛЯ НОВОГО ЗАДАНИЯ, ГДЕ ФУНКЦИЯ МИНИМИЗИРУЕТСЯ! ПЕРЕДЕЛКА НЕ ОСУЩЕСТВЛЯЕТСЯ! Перейти к канонической форме задачи линейного программирования. Z(x_1,x_2 )=p_1*x_1+p_2*x_2→max {█(a_1*x_1+a_2*x_2≥a@b_1*x_1+b_2*x_2≥b@c_1*x_1+c_2*x_2≥c@x_1;x_2≥0) Написать программу, решающую задачу линейного программирования в канонической форме симплекс-методом с выводом всех промежуточных симплексных таблиц. Решить исходную задачу графически и
User sibguter : 29 мая 2019
139 руб.
Алгоритмы и вычислительные методы оптимизации. Курсовой проект. Вариант №6.
ВНИМАНИЕ! В 2020 ГОДУ ЗАДАНИЕ ИЗМЕНИЛОСЬ! ЭТО РЕШЕНИЕ НЕ ПОДХОДИТ ДЛЯ НОВОГО ЗАДАНИЯ, ГДЕ ФУНКЦИЯ МИНИМИЗИРУЕТСЯ! ПЕРЕДЕЛКА НЕ ОСУЩЕСТВЛЯЕТСЯ! Перейти к канонической форме задачи линейного программирования. Z(x_1,x_2 )=p_1*x_1+p_2*x_2→max {█(a_1*x_1+a_2*x_2≥a@b_1*x_1+b_2*x_2≥b@c_1*x_1+c_2*x_2≥c@x_1;x_2≥0) Написать программу, решающую задачу линейного программирования в канонической форме симплекс-методом с выводом всех промежуточных симплексных таблиц. Решить исходную задачу графически и
User sibguter : 3 мая 2019
139 руб.
Экзаменационная работа по дисциплине «Менеджмент в телекоммуникациях». Билет №7
Билет №7 1.Методы технической эксплуатации АТС. 2. Построить сетевой график для следующих условий: комплекс работ состоит из трех работ, последовательность выполнения: вторая после первой, третья после второй.
User ladyChery : 29 марта 2012
150 руб.
Деньги. Кредит. Банки. Тема №7. Вариант №7
ВВЕДЕНИЕ 1. Принципы организации безналичных расчетов 2. Порядок открытия расчетного счета в банке 3. Организация межбанковских расчетов ПРАКТИЧЕСКАЯ ЧАСТЬ Задача 1 Рассчитать реальную процентную ставку по депозиту на основе имею-щейся информации. Сделать вывод о целесообразности размещения средств на депозит. Показатель Значение Годовая номинальная процентная ставка по депозиту, % 125 Дата вклада (в текущем году) 01.05 Прогнозируемый годовой темп инфляции в следующем году, % 115 ИПЦ в текущем
User ДО Сибгути : 20 февраля 2014
60 руб.
Проект паровой турбины типа К-14-3,5
Регулирующая ступень Расчетный режим работы турбины Частота вращения ротора турбины Способ регулирования Регулирующая ступень Проточная часть исходной двухвенечной ступени скорости Тепловой расчет двухвенечной ступени скорости Выбор расчетного варианта регулирующей ступени Треугольники скоростей и потери энергии в решетках регулирующей ступени Нерегулируемые ступени Типы нерегулируемых ступеней Ориентировочные параметры последней ступени Ориентировочные параметры первой нерегулируемой ступени Ор
User evelin : 12 января 2016
65 руб.
Обработка экспериментальных данных. Контрольная работа. Вариант №2
Задание к контрольной работе по дисциплине «Обработка экспериментальных данных» Задание 1 В табл. 1 приведены 100 независимых числовых значений результатов измерений постоянного тока (в амперах). Определить ток, если с вероятностью Р точность измерений должна быть не ниже 2ε0. Значения Р и 2ε0 приведены в табл. 2. Свои исходные данные из табл. 1 студент находит, начиная с цифры, расположенной на пересечении столбца, соответствующего последней циф
User Damovoy : 1 декабря 2021
650 руб.
up Наверх