Теория телетрафика. Курсовая работа. Вариант №4
Состав работы
|
|
|
|
Описание
Задание на курсовую работу
Шифр: 9.9.6.16.4.2.6
Задачи:
1. На однолинейную СМО поступает простейший поток вызовов с параметром 34 выз/час. Вызовы обслуживаются с ожиданием. Время обслуживания вызовов распределено: а)показательно со средним значением 60 c; модель обслуживания М/М/1; б)постоянно с h=t ; модель обслуживания М/Д/1. Допустимое время ожидания начала обслуживания - 120 с. Определить: для модели М/М/1 и М/Д/1 - функцию распределения времени ожидания начала обслуживания;среднее время начала обслуживания для любого поступившего вызова; среднее время начала обслуживания для задержанных вызовов; среднюю длину очереди. По результатам расчета сделать выводы и сравнить две исследуемые системы обслуживания.
Задача 2.
2. Рассчитать величину возникающей на цифровой АТС нагрузки от абонентов следующих категорий: Идивидуального пользования Nи = 2000; Народно – хозяйственного сектора ''делового'' Nнд = 3000; Народно – хозяйственного сектора ''спального'' Nнс = 2000; Таксофонов местной связи Nт.мест. = 150; Таксофонов междугородных (исходящая связь) Nт.межд.= 15; Районных переговорных пунктов (РПП) Nрпп= 40; Исходящих СЛ от УАТС (на правах абонентов) Nсл= 40; Факсимильных аппаратов (соединения по телефонному алгоритму) Nф= 50; Абонентов ЦСИО с числом доступов: типа 2В+D = 35; типа 30B+D = 4; При определении возникающей нагрузки следует учесть нагрузку на ЗСЛ и УСС. Нумерация на сети шестизначная.
Задача 3.
3. Полнодоступный пучок из 5 линий обслуживает поток вызовов. Определить нагрузку, которая может поступать на этот пучок при потерях по вызовам 2 ‰ в случае простейшего потока и примитивного потока от 20 и 10 источников. По результатам расчетов сделать выводы.
Задача 4.
4. На вход коммутационной системы поступает нагрузка по двум пучкам линий, математическое ожидание которой 17 эрланг и 23 эрланг. На выходе ступени объединенная нагрузка распределяется по направлениям пропорционально коэффициентам 0,15, 0,35 и 0,5. определить расчетное значение нагрузки каждого направления и относительное отклонение расчетного значения нагрузки от ее математического ожидания. По результатам расчета сделать вывод.
Задача 5.
5. Определить нагрузку поступающую от тысячной линейной абонентской группы, если среднее число вызовов от одного абонента 3, среднее время разговора 100 с, доля вызовов закончившихся разговором 0,6. Нумерация на сети пяти- или шестизначная.
Задача 6.
6. На коммутационную систему поступает поток вызовов, создающий нагрузку 2,8 эрланга. Определить вероятности поступления ровно i вызовов Pi (i=0, 1, 2 ... N) при примитивном потоке от 7 источников и Pi (i=0,1, 2... j) при простейшем потоке вызовов. Построить кривые распределения вероятностей Pi =f(i) и произвести сравнение полученных результатов.
Задача 7.
7. На полнодоступный пучок емкостью 10 линий поступает простейший поток вызовов с параметром выз/час и выз/час. Время обслуживания распределено по экспоненциальному закону, средняя величина которого 90с. Постоянная обслуживания равна 1. Допустимое время ожидания начала обслуживания 90 с. Требуется определить: Вероятность потерь по времени; Вероятность занятия всех линий пучка; Вероятность потерь по вызовам; Вероятность того, что время ожидания начала обслуживания превысит t; Среднее время ожидания начала обслуживания по отношению к любому вызову; Среднее время ожидания начала обслуживания по отношению к задержанному вызову; Среднюю длину очереди; Вероятность того, что длина очереди превысит один вызов.
Шифр: 9.9.6.16.4.2.6
Задачи:
1. На однолинейную СМО поступает простейший поток вызовов с параметром 34 выз/час. Вызовы обслуживаются с ожиданием. Время обслуживания вызовов распределено: а)показательно со средним значением 60 c; модель обслуживания М/М/1; б)постоянно с h=t ; модель обслуживания М/Д/1. Допустимое время ожидания начала обслуживания - 120 с. Определить: для модели М/М/1 и М/Д/1 - функцию распределения времени ожидания начала обслуживания;среднее время начала обслуживания для любого поступившего вызова; среднее время начала обслуживания для задержанных вызовов; среднюю длину очереди. По результатам расчета сделать выводы и сравнить две исследуемые системы обслуживания.
Задача 2.
2. Рассчитать величину возникающей на цифровой АТС нагрузки от абонентов следующих категорий: Идивидуального пользования Nи = 2000; Народно – хозяйственного сектора ''делового'' Nнд = 3000; Народно – хозяйственного сектора ''спального'' Nнс = 2000; Таксофонов местной связи Nт.мест. = 150; Таксофонов междугородных (исходящая связь) Nт.межд.= 15; Районных переговорных пунктов (РПП) Nрпп= 40; Исходящих СЛ от УАТС (на правах абонентов) Nсл= 40; Факсимильных аппаратов (соединения по телефонному алгоритму) Nф= 50; Абонентов ЦСИО с числом доступов: типа 2В+D = 35; типа 30B+D = 4; При определении возникающей нагрузки следует учесть нагрузку на ЗСЛ и УСС. Нумерация на сети шестизначная.
Задача 3.
3. Полнодоступный пучок из 5 линий обслуживает поток вызовов. Определить нагрузку, которая может поступать на этот пучок при потерях по вызовам 2 ‰ в случае простейшего потока и примитивного потока от 20 и 10 источников. По результатам расчетов сделать выводы.
Задача 4.
4. На вход коммутационной системы поступает нагрузка по двум пучкам линий, математическое ожидание которой 17 эрланг и 23 эрланг. На выходе ступени объединенная нагрузка распределяется по направлениям пропорционально коэффициентам 0,15, 0,35 и 0,5. определить расчетное значение нагрузки каждого направления и относительное отклонение расчетного значения нагрузки от ее математического ожидания. По результатам расчета сделать вывод.
Задача 5.
5. Определить нагрузку поступающую от тысячной линейной абонентской группы, если среднее число вызовов от одного абонента 3, среднее время разговора 100 с, доля вызовов закончившихся разговором 0,6. Нумерация на сети пяти- или шестизначная.
Задача 6.
6. На коммутационную систему поступает поток вызовов, создающий нагрузку 2,8 эрланга. Определить вероятности поступления ровно i вызовов Pi (i=0, 1, 2 ... N) при примитивном потоке от 7 источников и Pi (i=0,1, 2... j) при простейшем потоке вызовов. Построить кривые распределения вероятностей Pi =f(i) и произвести сравнение полученных результатов.
Задача 7.
7. На полнодоступный пучок емкостью 10 линий поступает простейший поток вызовов с параметром выз/час и выз/час. Время обслуживания распределено по экспоненциальному закону, средняя величина которого 90с. Постоянная обслуживания равна 1. Допустимое время ожидания начала обслуживания 90 с. Требуется определить: Вероятность потерь по времени; Вероятность занятия всех линий пучка; Вероятность потерь по вызовам; Вероятность того, что время ожидания начала обслуживания превысит t; Среднее время ожидания начала обслуживания по отношению к любому вызову; Среднее время ожидания начала обслуживания по отношению к задержанному вызову; Среднюю длину очереди; Вероятность того, что длина очереди превысит один вызов.
Дополнительная информация
21.01.2020 Зачет Уважаемый Лизнева Юлия Сергеевна
Похожие материалы
Теория телетрафика Курсовая работа Вариант 4
Fijulika
: 12 апреля 2020
Задачи
Шифр: 9.9.6.16.4.2.6
Задачи:
1. На однолинейную СМО поступает простейший поток вызовов с параметром 34 выз/час. Вызовы обслуживаются с ожиданием. Время обслуживания вызовов распределено: а)показательно со средним значением 60 c; модель обслуживания М/М/1; б)постоянно с h=t ; модель обслуживания М/Д/1. Допустимое время ожидания начала обслуживания - 120 с. Определить: для модели М/М/1 и М/Д/1 - функцию распределения времени ожидания начала обслуживания;среднее время начал
35 руб.
Курсовая работа. Теория телетрафика. Вариант №4.
Ольга39
: 2 мая 2016
Шифр: 7.9.17.2.20.4.6
Задачи:
1. На однолинейную СМО поступает простейший поток вызовов с параметром 35 выз/час. Вызовы обслуживаются с ожиданием.
Время обслуживания вызовов распределено: а)показательно со средним значением 50 c; модель обслуживания М/М/1; б)постоянно с h=t ; модель обслуживания М/Д/1.
Допустимое время ожидания начала обслуживания - 100 с.
Определить: для модели М/М/1 и М/Д/1 - функцию распределения времени ожидания начала обслуживания; среднее время начала обслужив
150 руб.
Курсовая работа по теории телетрафика. Вариант № 4
mortis
: 21 октября 2012
Вариант 4
Задача 1
На коммутационную систему поступает поток вызовов, создающий нагрузку Y эрланг. Определить вероятности поступления ровно i вызовов Pi (i=0, 1, 2 ...N) при примитивном потоке от N источников и Pi ( i=0,1, 2...j...) при простейшем потоке вызовов. Построить кривые распределения вероятностей Pi =f ( i ) и произвести сравнение полученных результатов
Задача 2
Пучок ИШК координатной станции типа АТСК -Y обслуживает абонентов одного блока АИ. Определить поступающую на этот пучок нагру
200 руб.
Теория телетрафика. Курсовая работа. Вариант № 4
sanco25
: 29 марта 2012
Задача 1. На коммутационную систему поступает поток вызовов, создающий нагрузку Y эрланг. Определить вероятности поступления ровно i вызовов Pi (i=0, 1, 2 ...N) при примитивном потоке от N источников и Pi ( i=0,1, 2...j...) при простейшем потоке вызовов. Построить кривые распределения вероятностей Pi =f ( i ) и произвести сравнение полученных результатов. Величины Y и N приведены в табл. 1.
Задача 2.Пучок ИШК координатной станции типа АТСК -Y обслуживает абонентов одного блока АИ. Определить
100 руб.
Курсовая работа по дисциплине: «Теория телетрафика». Вариант №4
Помощь студентам СибГУТИ ДО
: 28 октября 2014
1. Задача №1
На коммутационную систему поступает поток вызовов, создающий нагрузку Y=3,6 эрланг. Определить вероятности поступления ровно i вызовов Pi (i=0, 1, 2 ...N) при примитивном потоке от N=9 источников и Pi ( i=0,1, 2...j...) при простейшем потоке вызовов. Построить кривые распределения вероятностей Pi =f ( i ) и произвести сравнение полученных результатов.
2. Задача №2
Пучок ИШК координатной станции типа АТСК -Y обслуживает абонентов одного блока АИ. Определить поступающую на
450 руб.
Курсовая работа по дисциплине: «Теория телетрафика». Вариант № 4
aleks797
: 9 февраля 2013
Задача 1.
На коммутационную систему поступает поток вызовов, создающий нагрузку Y эрланг. Определить вероятности поступления ровно i вызовов Pi (i=0, 1, 2 ...N) при примитивном потоке от N источников и Pi ( i=0,1, 2...j...) при простейшем потоке вызовов. Построить кривые распределения вероятностей Pi =f ( i ) и произвести сравнение полученных результатов. Величины Y и N приведены в табл. 1.
Задача 2.
Пучок ИШК координатной станции типа АТСК -Y обслуживает абонентов одного блока АИ. Определить
100 руб.
Курсовая работа теория телетрафика
elina56
: 24 октября 2017
Шифр: 12.3.15.15.0.4.5
Задачи:
1. На однолинейную СМО поступает простейший поток вызовов с параметром 35 выз/час. Вызовы обслуживаются с ожиданием. Время обслуживания вызовов распределено: а) показательно со средним значением 70 c; модель обслуживания М/М/1;
б) постоянно с h=t ; модель обслуживания М/Д/1. Допустимое время ожидания начала обслуживания - 140 с. Определить: для модели М/М/1 и М/Д/1 - функцию распределения времени ожидания начала обслуживания; среднее время начала
200 руб.
Курсовая работа по теории телетрафика
katy269
: 5 января 2015
Курсовик на проектирование ЦОВ
Задача 2 вариант 4
Всё подробно расписано. По представленному варианту можно без труда рассчитать любой другой.
Защищено на отлично
50 руб.
Другие работы
Программирование для мобильных устройств. Курсовая работа. Вариант №1.
ASSASSIN
: 18 марта 2017
Задание
В рамках курсового проекта необходимо выполнение четырех следующих заданий в соответствии с вариантом. Все задания курсовой работы объединены в одну программу (один проект).
Вариант задания вычисляется так: остаток от деления на 3 последней цифры Вашего пароля (идентификатора) плюс единица. Для цифры 6: (6%3)+1 = (0)+1 = 1. Итог: вариант №1.
Задание 1:
Реализуйте простейший Калькулятор. Имеется набор кнопок, циферблат. Калькулятор позволяет вычислять (сумму, разность, произведение и час
350 руб.
Разработка пункта технического обслуживания автомобилей в условиях оао «автоваз» г. тольятти самарской области
Рики-Тики-Та
: 18 февраля 2017
АННОТАЦИЯ
Дипломный проект выполнен на___ страницах машинописного текста и _10_ листах графической части формата А1.
Проведён анализ деятельности предприятия и технической эксплуатации подвижного состава.
С целью эффективного использования имеющихся площадей, в проекте разработан пункт технического обслуживания, приведены необходимые техно-логические расчеты и планировка пункта.
Для уменьшения трудоемкости при проведении технических обслужива-ний и ремонта автомобилей, разработан стенд для разбо
825 руб.
Уравнения и неравенства с модулем на централизованном тестировании
Elfa254
: 15 сентября 2013
Оглавление
Введение
Абсолютная величина и её свойства
Простейшие уравнения и неравенства с модулем
Графическое решение уравнений и неравенств с модулем
Иные способы решения уравнений и неравенств с модулем
Метод раскрытия модулей
Использование тождества, при решении уравнений
Решение уравнений содержащих модули неотрицательных выражений
Решение уравнений с использованием геометрической интерпретации
Решение уравнений с использованием тождества
Применение теоремы о знаках при решении у
5 руб.
Техническая термодинамика и теплотехника УГНТУ Задача 1 Вариант 97
Z24
: 14 декабря 2025
Для газовой смеси, имеющей определенный объем каждого компонента определить:
— объемный состав смеси;
— массовый состав смеси;
— удельные газовые постоянные компонентов и смеси;
— кажущуюся молекулярную массу смеси;
— массы и парциальные давления компонентов, при давлении смеси (рсм, МПа), объеме смеси (м³) и температуре (tсм);
— плотность и удельный объем компонентов и смеси при заданных и нормальных физических условиях;
— средние теплоемкости смеси (массовую и объемную) пр
280 руб.