Экзаменационная работа по дисциплине: Теория вероятностей и математическая статистика. Билет №1
Состав работы
|
|
Работа представляет собой файл, который можно открыть в программе:
- Microsoft Word
Описание
Дисциплина «теория вероятностей»
Экзаменационный билет №1
Ответы к тестовым вопросам впишите в таблицу, решение приводить не требуется.
Вопрос 1.
Согласно классическому определению, вероятность события равна…
Варианты ответа:
1. отношению числа элементарных исходов, включающих это событие к числу элементарных исходов, исключающих данное событие.
2. произведению числа элементарных исходов, включающих это событие к числу элементарных исходов, исключающих данное событие.
3. отношению числа элементарных исходов, включающих это событие к числу всех возможных элементарных исходов.
Вопрос 2.
Сумма двух событий А и Б - это событие, состоящее в том, что наступило …
Варианты ответа:
1. либо А, либо Б.
2. А и Б.
3. А или Б.
Вопрос 3.
Вычислить значение C_7^3*A_6^2.
Варианты ответа:
1. 275
2. 5725
3. 1050
4. 120
Вопрос 4.
Игральную кость бросают дважды. Какова вероятность, что ровно один раз выпадет шесть очков?
Варианты ответа:
1. 10/36
2. 1/3
3. 1/36
4. 25/36
Вопрос 5.
Формула P(A+B)=P(A)+P(B) верна, если...
Варианты ответа:
1. события А и В несовместны.
2. события А и В совместны .
3. события А и В независимы.
4. события А и В зависимы.
Вопрос 6.
Формула P(AB)/P(A) используется для вычисления вероятности того, что ...
Варианты ответа:
1. произойдет событие А при условии, что В уже произошло.
2. произойдет событие B при условии, что A уже произошло.
3. событие А произошло вследствие события В.
4. событие Bпроизошло вследствие события A.
Вопрос 7.
Карточки, на которых написано слово ГОЛОВА перемешали и стали вытаскивать наугад по одной до тех пор, пока не вытащат гласную. Какова вероятность, что всего понадобится вытянуть три карточки?
Варианты ответа:
1. 3/20
2. 1/6
3. 1/14
4. 1/60
Вопрос 8.
Найдите математическое ожидание случайной величины заданной плотностью распределения
f(x)=
2x, 0<x<1;
0, x не принадлежит (0;1).
Варианты ответа:
1. 2/3
2. 1/3
3. 1/2
4. -1/6
Вопрос 9.
Пусть вероятность наступления события A в испытании равна p. Тогда вероятность того, что в n независимых испытаниях событие A наступит m раз вычисляется по формуле ...
Варианты ответа:
1. Pn(m)=An^(m)p^(m)(1-p)^(n-m)
2. Pn(m)=Cn^(m)p^(m)(1-p)^(n-m)
3. Pn(m)=Cm^(n)p^(m)(1-p)^(n-m)
Вопрос 10.
Вероятность попадания случайной величины в интервал(-oo,a)равна ....
Варианты ответа:
1. P(x<=a)=инт[f(x)dx]
2. P(x<a)=F(a)
3. P(x<=a)=инт[f(x)dx]
Вопрос 11.
xi 2 3 4 5
ni 0 5 13 32
Дан статический закон распределения оценок за дипломную работу по наблюдениям за прошлый год. Найдите выборочное среднее.
Варианты ответа:
1. 3,7
2. 4,34
3. 4,54
4. 3,82
Вопрос 12.
Вероятность передать без искажений сигнал по некоторой линии связи равна 0,6. В случае искажения сигнал передается заново, и так далее, пока он не будет передан без искажения. Какова вероятность того, что сигнал потребуется передать не более трех раз?
Варианты ответа:
1. 0,842
2. 0,936
3. 0,84
4. 0,069
Вопрос 13.
Две фабрики производят одинаковые кеды и отправляют их на склад. Треть продукции на складе с первой фабрики. Известно, что процент бракованной продукции на фабриках составляет 2% и 5% соответственно. Какова вероятность того, что случайно взятая со склада пара кед бракованная?
Варианты ответа:
1. 0,03
2. 0,05
3. 0,04
4. 0,024
Вопрос 14.
Две фабрики производят одинаковые кеды и отправляют их на склад. Треть продукции на складе с первой фабрики. Известно, что процент бракованной продукции на фабриках составляет 2% и 5% соответственно. Случайно взятая со склада пара оказалась бракованной. Какова вероятность, что это пара с первой фабрики?
Варианты ответа:
1. 0,03
2. 1/3
3. 1/6
4. 0,024
Вопрос 15.
Вероятность передать без искажений сигнал по некоторой линии связи равна 0,9. Какова вероятность того, что из 100 переданных сигналов без искажения передано от 87 до 95?
Варианты ответа:
1. 0,715
2. 0,794
3. 0,394
4. 0,167
Экзаменационный билет №1
Ответы к тестовым вопросам впишите в таблицу, решение приводить не требуется.
Вопрос 1.
Согласно классическому определению, вероятность события равна…
Варианты ответа:
1. отношению числа элементарных исходов, включающих это событие к числу элементарных исходов, исключающих данное событие.
2. произведению числа элементарных исходов, включающих это событие к числу элементарных исходов, исключающих данное событие.
3. отношению числа элементарных исходов, включающих это событие к числу всех возможных элементарных исходов.
Вопрос 2.
Сумма двух событий А и Б - это событие, состоящее в том, что наступило …
Варианты ответа:
1. либо А, либо Б.
2. А и Б.
3. А или Б.
Вопрос 3.
Вычислить значение C_7^3*A_6^2.
Варианты ответа:
1. 275
2. 5725
3. 1050
4. 120
Вопрос 4.
Игральную кость бросают дважды. Какова вероятность, что ровно один раз выпадет шесть очков?
Варианты ответа:
1. 10/36
2. 1/3
3. 1/36
4. 25/36
Вопрос 5.
Формула P(A+B)=P(A)+P(B) верна, если...
Варианты ответа:
1. события А и В несовместны.
2. события А и В совместны .
3. события А и В независимы.
4. события А и В зависимы.
Вопрос 6.
Формула P(AB)/P(A) используется для вычисления вероятности того, что ...
Варианты ответа:
1. произойдет событие А при условии, что В уже произошло.
2. произойдет событие B при условии, что A уже произошло.
3. событие А произошло вследствие события В.
4. событие Bпроизошло вследствие события A.
Вопрос 7.
Карточки, на которых написано слово ГОЛОВА перемешали и стали вытаскивать наугад по одной до тех пор, пока не вытащат гласную. Какова вероятность, что всего понадобится вытянуть три карточки?
Варианты ответа:
1. 3/20
2. 1/6
3. 1/14
4. 1/60
Вопрос 8.
Найдите математическое ожидание случайной величины заданной плотностью распределения
f(x)=
2x, 0<x<1;
0, x не принадлежит (0;1).
Варианты ответа:
1. 2/3
2. 1/3
3. 1/2
4. -1/6
Вопрос 9.
Пусть вероятность наступления события A в испытании равна p. Тогда вероятность того, что в n независимых испытаниях событие A наступит m раз вычисляется по формуле ...
Варианты ответа:
1. Pn(m)=An^(m)p^(m)(1-p)^(n-m)
2. Pn(m)=Cn^(m)p^(m)(1-p)^(n-m)
3. Pn(m)=Cm^(n)p^(m)(1-p)^(n-m)
Вопрос 10.
Вероятность попадания случайной величины в интервал(-oo,a)равна ....
Варианты ответа:
1. P(x<=a)=инт[f(x)dx]
2. P(x<a)=F(a)
3. P(x<=a)=инт[f(x)dx]
Вопрос 11.
xi 2 3 4 5
ni 0 5 13 32
Дан статический закон распределения оценок за дипломную работу по наблюдениям за прошлый год. Найдите выборочное среднее.
Варианты ответа:
1. 3,7
2. 4,34
3. 4,54
4. 3,82
Вопрос 12.
Вероятность передать без искажений сигнал по некоторой линии связи равна 0,6. В случае искажения сигнал передается заново, и так далее, пока он не будет передан без искажения. Какова вероятность того, что сигнал потребуется передать не более трех раз?
Варианты ответа:
1. 0,842
2. 0,936
3. 0,84
4. 0,069
Вопрос 13.
Две фабрики производят одинаковые кеды и отправляют их на склад. Треть продукции на складе с первой фабрики. Известно, что процент бракованной продукции на фабриках составляет 2% и 5% соответственно. Какова вероятность того, что случайно взятая со склада пара кед бракованная?
Варианты ответа:
1. 0,03
2. 0,05
3. 0,04
4. 0,024
Вопрос 14.
Две фабрики производят одинаковые кеды и отправляют их на склад. Треть продукции на складе с первой фабрики. Известно, что процент бракованной продукции на фабриках составляет 2% и 5% соответственно. Случайно взятая со склада пара оказалась бракованной. Какова вероятность, что это пара с первой фабрики?
Варианты ответа:
1. 0,03
2. 1/3
3. 1/6
4. 0,024
Вопрос 15.
Вероятность передать без искажений сигнал по некоторой линии связи равна 0,9. Какова вероятность того, что из 100 переданных сигналов без искажения передано от 87 до 95?
Варианты ответа:
1. 0,715
2. 0,794
3. 0,394
4. 0,167
Дополнительная информация
Оценка - отлично!
Дата сдачи: февраль 2020 г.
Помогу с другим вариантом.
Выполняю работы на заказ по различным дисциплинам.
E-mail: LRV967@ya.ru
Дата сдачи: февраль 2020 г.
Помогу с другим вариантом.
Выполняю работы на заказ по различным дисциплинам.
E-mail: LRV967@ya.ru
Похожие материалы
Экзаменационная работа по дисциплине: Теория вероятностей и математическая статистика. Билет №1
SibGOODy
: 20 июля 2018
Билет №1
1. Понятие случайного события. Алгебра событий. Вероятность случайного события: классическое, статистическое и аксиоматическое определение.
2. Из урны, где находятся 6 белых и 4 черных шара, случайно вытащены 5 шаров. Какова вероятность того, что среди них будет 2 белых шара?
3. Дискретная случайная величина имеет следующий ряд распределения
Х -10 -5 0 5 10
р 0,12 0,32 a 0,41 0,04
Найти величину a, математическое ожидание и среднее квадратическое отклонение этой случайной величины
600 руб.
Экзаменационная работа по дисциплине: Теория вероятностей и математическая статистика билет № 1
Samolyanova
: 11 декабря 2017
1. Понятие случайного события. Алгебра событий. Вероятность случайного события: классическое, статистическое и аксиоматическое определение.
2. Из урны, где находятся 6 белых и 4 черных шара, случайно вытащены 5 шаров. Какова вероятность того, что среди них будет 2 белых шара?
3. Дискретная случайная величина имеет следующий ряд распределения
Х -10 -5 0 5 10
р 0,12 0,32 a 0,41 0,04
Найти величину a, математическое ожидание и среднее квадратическое отклонение этой случайной величины.
4. Непрер
200 руб.
Экзаменационная работа по дисциплине Теория вероятностей и математическая статистика.
Grechikhin
: 30 ноября 2022
Обратите внимание на представленные скриншоты!!!
500 руб.
Экзаменационная работа по дисциплине: "Теория вероятностей и математическая статистика"
Ivanych
: 19 марта 2017
Вариант №3
Задание №1
Дискретная случайная величина. Ряд и функция распределения. Биномиальное распределение и распределение Пуассона, их характеристики
Задание №2
Из урны, где находятся 3 белых и 7 черных шаров случайно вытащены 4 шара. Какова вероятность того, что среди них будет 3 черных шара?
150 руб.
Экзаменационная работа по дисциплине: Теория вероятностей и математическая статистика
evanarty
: 8 сентября 2015
1. Распределение Пуассона и его характеристики.
2. Четырехзначный номер не содержит нулей. Какова вероятность, что он содержит одну «семерку»?
3. По цифровому каналу передаются символы "О" и "I", причем доля передаваемых нулей вдвое больше, чем единиц. Вероятность искажения символа "О" равна 0,06, вероятность искажения "I" - 0,09. Найти вероятность искажения символа при передаче по этому каналу.
4. Для случайного вектора (X,Y): найти
5. Вероятность наступления события в каждом из независимых ис
80 руб.
Экзаменационная работа по дисциплине: Теория вероятностей и математическая статистика
pvv1962
: 4 апреля 2015
1. Вероятность случайного события: классическое, статистическое и аксиоматическое определение.
2. В группе 15 девушек и 10 юношей. На дежурство случайно выбирают 3 человека. Какова вероятность, что среди них будут люди одного пола?
3. Плотность распределения случайной величины имеет вид . Найти a, F(x) и P {|x|<1}.
4. Вероятность отказа радиолампы 0,2. Найти вероятность, что из 100 ламп откажут от 14 до 26.
5. Случайная величина Х имеет нормальное распределение с .
75 руб.
ЭКЗАМЕНАЦИОННАЯ РАБОТА по дисциплине: «Теория вероятности и математическая статистика»
nvm1604
: 22 марта 2015
Билет № 15
1. Дискретная двумерная случайная величина и её распределение.
2. Интегральная функция распределения случайной величины X имеет вид:
Найти коэффициент А, плотность f(x) и вероятность попадания Х в интервал [1;2].
50 руб.
Экзаменационная работа по дисциплине: Теория вероятности и математическая статистика
петрккк
: 6 апреля 2013
1. Дифференциальные уравнения 1 порядка с разделяющимися переменными и их решения.
Дифференциальное уравнение первого порядка называется уравнением с разделяющимися переменными, если оно может быть представлено в виде q(у)
2. Дискретная случайная величина. Ряд распределения и числовые характеристики.
Случайной величиной называется переменная величина, значения которой зависят от случая и для которой определена функция распределения.
Пусть х – случайная величина, х – действительное чис
150 руб.
Другие работы
Анализ и совершенствование маркетинговой политики ОАО "Башспирт"
VikkiROY
: 2 ноября 2012
Содержание
Введение……………………………………………………..........…………….....3
1. Теоретические вопросы маркетинговой деятельности в российской торговле алкогольной продукции..........................................................................6
1.1 Региональные особенности управления рынком алкогольной продукции…………………………………………...…………………..................6
1.2 Рынок алкогольной продукции - как сектор рынка продовольственных товаров……………..………………………………………….....…………….......8
1.3 Анализ динамики объемов потреб
10 руб.
Насос 42.000
vermux1
: 5 октября 2021
Насос 42.000 сборочный чертеж
Насос 42.000 спецификация
Насос 42.000 3d модель
Рычаг насоса 42.001
Гайка 42.002
Крышка насоса 42.003
Корпус насоса 42.004
Ось клапанов 42.005
Крыльчатка 42.006
Ось крыльчатки 42.007
Штуцер 42.008
Шарик рычага 42.009
Коробка клапанов 42.012
Клапан 42.013
Коробка клапанов 42.015
Насос двустороннего действия предназначен для перекачивания различных жидкостей, в том числе топлива при заправке автомобилей. Он состоит из корпуса 4 с крышкой 3, оси 7 с рычагом 1, крыльч
190 руб.
Контрольная работа и лабораторная работа №1 -3 по дисциплине: схемотехника телекоммуникационных устройств вариант 6
Ирина36
: 20 августа 2024
ЛАБОРАТОРНАЯ РАБОТА No1 ИССЛЕДОВАНИЕ РЕЗИСТОРНОГО КАСКАДА ПРЕДВАРИТЕЛЬНОГО УСИЛЕНИЯ НА БИПОЛЯРНОМ ТРАНЗИСТОРЕ ПО ДИСЦИПЛИНЕ: СХЕМОТЕХНИКА ТЕЛЕКОММУНИКАЦИОННЫХ УСТРОЙСТВ ВАРИАНТ 6
1. Цель работы: исследовать влияние параметров элементов схемы каскада с эмиттерной стабилизацией на его показатели (коэффициент усиления, частотные и переходные характеристики).
2. Задание к работе
2.1. Исследовать логарифмических амплитудно-частотных характеристик(ЛАЧХ) и фазочастотных (ЛФЧХ) характеристик усилите
1200 руб.
Планирование инвестиционной стратегии повышения конкурентоспособности предприятия (на примере ОАО "Нижнекамскнефтехим")
alfFRED
: 14 ноября 2013
Актуальность исследования
За последние десятилетия усиление конкуренции отмечено фактически во всем мире. Еще не так давно во многих странах и отраслях рынки были защищены и доминирующие позиции на них были четко определены. И даже там, где существовало соперничество, оно не было столь ожесточенным.
Под конкурентоспособностью следует понимать многоплановую экономическую категорию, которую можно рассматривать на нескольких уровнях: конкурентоспособность товаров, товаропроизводителей, регионов,
10 руб.