Контрольная работа по дисциплине: Математический анализ (часть 2) Вариант 2. 12. 22
Состав работы
|
|
Работа представляет собой файл, который можно открыть в программе:
- Microsoft Word
Описание
1. Вычислить несобственный интеграл или доказать его расходимость 〖∫┴(-3)〗┬(-∞) xdx/(x^2+1)^2 .
2. Вычислить с помощью двойного интеграла объема тела, ограниченного указанными поверхностями z=0;z=4-x-y; x^2+y^2=4.
3. Вычислить криволинейный интеграл по координатам
∫┬(L_OA ) (xy-y^2 )dx+xdy,
Где L_OA – дуга параболы y=2x^2 от точки O(0,0) до точки A(1,2).
4. Найти общее решение дифференциального уравнения первого порядка y^' cosx=(y+1) sinx.
5. Решить задачу Коши
y^' cos^2x+y=e^tgx , y(0)=0.
2. Вычислить с помощью двойного интеграла объема тела, ограниченного указанными поверхностями z=0;z=4-x-y; x^2+y^2=4.
3. Вычислить криволинейный интеграл по координатам
∫┬(L_OA ) (xy-y^2 )dx+xdy,
Где L_OA – дуга параболы y=2x^2 от точки O(0,0) до точки A(1,2).
4. Найти общее решение дифференциального уравнения первого порядка y^' cosx=(y+1) sinx.
5. Решить задачу Коши
y^' cos^2x+y=e^tgx , y(0)=0.
Похожие материалы
Контрольная работа по дисциплине: Математический анализ (часть 2). Вариант №2
Учеба "Под ключ"
: 19 октября 2016
Вариант №2
1. Вычислить несобственный интеграл или доказать его расходимость (см. скрин)
2. Вычислить с помощью двойного интеграла объем тела, ограниченного указанными поверхностями: (см. скрин)
3. Вычислить криволинейный интеграл по координатам,
где - дуга параболы от точки до точки. (см. скрин)
4. Найти общее решение дифференциального уравнения первого порядка: (см. скрин)
5. Решить задачу Коши: (см. скрин)
450 руб.
Контрольная работа по дисциплине: Математический анализ (часть 2). Вариант 3
Учеба "Под ключ"
: 8 декабря 2022
Дистанционное обучение
Дисциплина «Математический анализ». Часть 2.
Вариант № 3
1. Вычислить несобственный интеграл или доказать его расходимость
dx/(X^(2)+x+1)
2. Вычислить с помощью двойного интеграла объем тела, ограниченного указанными поверхностями
z=0; z=y^(2); x^(2)+y^(2)=9
3. Вычислить криволинейный интеграл по координатам
(x-1/y)dy,
где Lab - дуга параболы y=x^(2) от точки A(1,1) до точки D(2,4).
4. Найти общее решение дифференциального уравнения первого порядка
(1+x^(2))y`-2xy=(1+
450 руб.
Контрольная работа по дисциплине: Математический анализ (часть 2). Вариант №8
Учеба "Под ключ"
: 8 декабря 2022
Дистанционное обучение
Дисциплина «Математический анализ». Часть 2.
Вариант № 8
1. Вычислить несобственный интеграл или доказать его расходимость
dx/(x-2)^(2)
2. Вычислить с помощью двойного интеграла объем тела, ограниченного указанными поверхностями
z=0; z=1-y^(2); x=y^(2); x=2y^(2)+1
3. Вычислить криволинейный интеграл по координатам
y^(2)dx+x^(2)dy,
где L - верхняя половина эллипса x=acost, y=bsint, "пробегаемая" по ходу часовой стрелки.
4. Найти общее решение дифференциального уравнени
450 руб.
Контрольная работа по дисциплине: Математический анализ (часть 2). Вариант №6
Roma967
: 18 августа 2019
Вариант №6
1. Вычислить несобственный интеграл или доказать его расходимость (см. скрин)
2. Вычислить с помощью двойного интеграла объем тела, ограниченного указанными поверхностями: z=0, 4z=y^(2), 2x-y=0, x+y=9
3. Вычислить криволинейный интеграл по координатам (см. скрин), где Lов - дуга параболы y=2*корень(x) от точки O(0,0) до точки B(1,2).
4. Найти общее решение дифференциального уравнения первого порядка x^(2)y'=2xy+3
5. Решить задачу Коши xy'=xe^(y/x)+y, y(1)=0
450 руб.
Контрольная работа по дисциплине: Математический анализ (часть 2) вариант 06
rusyyaaaa
: 23 июня 2019
Дисциплина «Математический анализ». Часть 2.
Вариант № 6
1. Вычислить несобственный интеграл или доказать его расходимость
2. Вычислить с помощью двойного интеграла объем тела, ограниченного указанными поверхностями
; ; ;
3. Вычислить криволинейный интеграл по координатам
,
где - дуга параболы от точки до точки .
4. Найти общее решение дифференциального уравнения первого порядка
5. Решить задачу Коши
,
Контрольная работа по дисциплине Математический анализ (часть 2). Вариант № 6
Alexbur1971
: 10 мая 2019
Контрольная работа
Дисциплина «Математический анализ». Часть 2.
Вариант № 6
1. Вычислить несобственный интеграл или доказать его расходимость
2. Вычислить с помощью двойного интеграла объем тела, ограниченного указанными поверхностями
3. Вычислить криволинейный интеграл по координатам
4. Найти общее решение дифференциального уравнения первого порядка
5. Решить задачу Коши
200 руб.
Контрольная работа по дисциплине: Математический анализ (часть 2). Вариант №5
SibGOODy
: 26 августа 2018
Вариант №5
1. Вычислить несобственный интеграл или доказать его расходимость (см. скрин).
2. Вычислить с помощью двойного интеграла объем тела, ограниченного указанными поверхностями
z=0; y+z=2; x^(2)+y^(2)=4.
3. Вычислить криволинейный интеграл по координатам (см. скрин), где Loa - дуга параболы y=x^(2)/4 от точки O(0;0) до точки A(2;1).
4. Найти общее решение дифференциального уравнения первого порядка xy'=y ln (y/x)
5. Решить задачу Коши y'=-2y+e^(3x), y(0)=1.
450 руб.
Контрольная работа по дисциплине: Математический анализ (часть 2). Вариант №1
Учеба "Под ключ"
: 25 июля 2017
Вариант №1
1. Вычислить несобственный интеграл или доказать его расходимость (см.скрин)
2. Вычислить с помощью двойного интеграла объем тела, ограниченного указанными поверхностями
z=0; z=9-y^(2); x^(2)+y^(2)=9
3. Вычислить криволинейный интеграл по координатам (см. скрин)
где Lab - отрезок прямой, соединяющий точки A(2;-2) и B(-2;2).
4. Найти общее решение дифференциального уравнения первого порядка (см скрин)
5. Решить задачу Коши (см. скрин)
450 руб.
Другие работы
Механика жидкости и газа ВлГУ Контрольное задание 1 Задача 3 Вариант 4
Z24
: 22 декабря 2025
Цилиндрический закрытый сосуд (рис. 13, табл. 3) с вертикальной осью, имеющий высоту H и диаметр 2R, наполнен жидкостью на глубину H0. Определить скорость его вращения (число оборотов в минуту) в двух случаях: а) когда воронка расположена на высоте h над дном сосуда; б) когда диаметр воронки равен 2r.
160 руб.
Анализ и оценка ликвидности предприятия на примере ОАО "ТНК"
alfFRED
: 11 ноября 2013
Содержание
Введение
1. Теоретические основы ликвидности
1.1 Определение и виды ликвидности
1.2 Методы управления ликвидностью
1.3 Оценка ликвидности баланса предприятия
1.4 Анализ платежеспособности и кредитоспособности предприятия
1.5 Значение анализа ликвидности и платежеспособности предприятия
2. Анализ ликвидности предприятия на примере ОАО «ТНК»
2.1 Общая информация о компании
2.2 Анализ и оценка ликвидности баланса предприятия
2.3 Показатели ликвидности ОАО «ТНК»
3. Пути повыше
10 руб.
Курсовая работа по дисциплине: Основы построения телекоммуникационных систем и сетей. Вариант №09
IT-STUDHELP
: 7 января 2020
Задача No1
Вычислить вероятность ошибки при регистрации методом стробирования, в соответствии с приложением 1.
N 9
m 47
s 15
А N+1
Задача No 2
Коэффициент нестабильности задающего генератора устройства синхронизации и передатчика К=10-6 . Исправляющая способность приемника m =40%. Краевые искажения отсутствуют. Постройте зависимость времени нормальной работы (без ошибок) приемника от скорости телеграфирования после выхода из строя фазового детектора устройства синхронизации. Будут ли возникат
200 руб.
Разработка системы управления робото-технологическим комплексом для токарной обработки, АТПП
bioclown
: 26 сентября 2011
Разработка системы управления робото-технологическим комплексом для токарной обработки
КУРСОВАЯ РАБОТА
Дисциплина: Автоматизация технологических процессов и производств
Реферат……………………………………………………….……………………2
Содержание…………………………………………………………………..……4
Введение…………………………………………………………………………...5
1. Обоснование необходимости автоматизации РТК для токарной обработки……………………………………………………………………….…7
1.1 Характеристика автоматизируемого технологического объекта……...…...7
1.2 Анализ путей автоматизации ………………
69 руб.