Контрольная работа по дисциплине: Математический анализ (часть 2) Вариант 2. 12. 22
Состав работы
|
|
Работа представляет собой файл, который можно открыть в программе:
- Microsoft Word
Описание
1. Вычислить несобственный интеграл или доказать его расходимость 〖∫┴(-3)〗┬(-∞) xdx/(x^2+1)^2 .
2. Вычислить с помощью двойного интеграла объема тела, ограниченного указанными поверхностями z=0;z=4-x-y; x^2+y^2=4.
3. Вычислить криволинейный интеграл по координатам
∫┬(L_OA ) (xy-y^2 )dx+xdy,
Где L_OA – дуга параболы y=2x^2 от точки O(0,0) до точки A(1,2).
4. Найти общее решение дифференциального уравнения первого порядка y^' cosx=(y+1) sinx.
5. Решить задачу Коши
y^' cos^2x+y=e^tgx , y(0)=0.
2. Вычислить с помощью двойного интеграла объема тела, ограниченного указанными поверхностями z=0;z=4-x-y; x^2+y^2=4.
3. Вычислить криволинейный интеграл по координатам
∫┬(L_OA ) (xy-y^2 )dx+xdy,
Где L_OA – дуга параболы y=2x^2 от точки O(0,0) до точки A(1,2).
4. Найти общее решение дифференциального уравнения первого порядка y^' cosx=(y+1) sinx.
5. Решить задачу Коши
y^' cos^2x+y=e^tgx , y(0)=0.
Похожие материалы
Контрольная работа по дисциплине: Математический анализ (часть 2). Вариант №2
Учеба "Под ключ"
: 19 октября 2016
Вариант №2
1. Вычислить несобственный интеграл или доказать его расходимость (см. скрин)
2. Вычислить с помощью двойного интеграла объем тела, ограниченного указанными поверхностями: (см. скрин)
3. Вычислить криволинейный интеграл по координатам,
где - дуга параболы от точки до точки. (см. скрин)
4. Найти общее решение дифференциального уравнения первого порядка: (см. скрин)
5. Решить задачу Коши: (см. скрин)
450 руб.
Контрольная работа по дисциплине: Математический анализ (часть 2). Вариант 3
Учеба "Под ключ"
: 8 декабря 2022
Дистанционное обучение
Дисциплина «Математический анализ». Часть 2.
Вариант № 3
1. Вычислить несобственный интеграл или доказать его расходимость
dx/(X^(2)+x+1)
2. Вычислить с помощью двойного интеграла объем тела, ограниченного указанными поверхностями
z=0; z=y^(2); x^(2)+y^(2)=9
3. Вычислить криволинейный интеграл по координатам
(x-1/y)dy,
где Lab - дуга параболы y=x^(2) от точки A(1,1) до точки D(2,4).
4. Найти общее решение дифференциального уравнения первого порядка
(1+x^(2))y`-2xy=(1+
450 руб.
Контрольная работа по дисциплине: Математический анализ (часть 2). Вариант №8
Учеба "Под ключ"
: 8 декабря 2022
Дистанционное обучение
Дисциплина «Математический анализ». Часть 2.
Вариант № 8
1. Вычислить несобственный интеграл или доказать его расходимость
dx/(x-2)^(2)
2. Вычислить с помощью двойного интеграла объем тела, ограниченного указанными поверхностями
z=0; z=1-y^(2); x=y^(2); x=2y^(2)+1
3. Вычислить криволинейный интеграл по координатам
y^(2)dx+x^(2)dy,
где L - верхняя половина эллипса x=acost, y=bsint, "пробегаемая" по ходу часовой стрелки.
4. Найти общее решение дифференциального уравнени
450 руб.
Контрольная работа по дисциплине: Математический анализ (часть 2). Вариант №6
Roma967
: 18 августа 2019
Вариант №6
1. Вычислить несобственный интеграл или доказать его расходимость (см. скрин)
2. Вычислить с помощью двойного интеграла объем тела, ограниченного указанными поверхностями: z=0, 4z=y^(2), 2x-y=0, x+y=9
3. Вычислить криволинейный интеграл по координатам (см. скрин), где Lов - дуга параболы y=2*корень(x) от точки O(0,0) до точки B(1,2).
4. Найти общее решение дифференциального уравнения первого порядка x^(2)y'=2xy+3
5. Решить задачу Коши xy'=xe^(y/x)+y, y(1)=0
450 руб.
Контрольная работа по дисциплине: Математический анализ (часть 2) вариант 06
rusyyaaaa
: 23 июня 2019
Дисциплина «Математический анализ». Часть 2.
Вариант № 6
1. Вычислить несобственный интеграл или доказать его расходимость
2. Вычислить с помощью двойного интеграла объем тела, ограниченного указанными поверхностями
; ; ;
3. Вычислить криволинейный интеграл по координатам
,
где - дуга параболы от точки до точки .
4. Найти общее решение дифференциального уравнения первого порядка
5. Решить задачу Коши
,
Контрольная работа по дисциплине Математический анализ (часть 2). Вариант № 6
Alexbur1971
: 10 мая 2019
Контрольная работа
Дисциплина «Математический анализ». Часть 2.
Вариант № 6
1. Вычислить несобственный интеграл или доказать его расходимость
2. Вычислить с помощью двойного интеграла объем тела, ограниченного указанными поверхностями
3. Вычислить криволинейный интеграл по координатам
4. Найти общее решение дифференциального уравнения первого порядка
5. Решить задачу Коши
200 руб.
Контрольная работа по дисциплине: Математический анализ (часть 2). Вариант №5
SibGOODy
: 26 августа 2018
Вариант №5
1. Вычислить несобственный интеграл или доказать его расходимость (см. скрин).
2. Вычислить с помощью двойного интеграла объем тела, ограниченного указанными поверхностями
z=0; y+z=2; x^(2)+y^(2)=4.
3. Вычислить криволинейный интеграл по координатам (см. скрин), где Loa - дуга параболы y=x^(2)/4 от точки O(0;0) до точки A(2;1).
4. Найти общее решение дифференциального уравнения первого порядка xy'=y ln (y/x)
5. Решить задачу Коши y'=-2y+e^(3x), y(0)=1.
450 руб.
Контрольная работа по дисциплине: Математический анализ (часть 2). Вариант №1
Учеба "Под ключ"
: 25 июля 2017
Вариант №1
1. Вычислить несобственный интеграл или доказать его расходимость (см.скрин)
2. Вычислить с помощью двойного интеграла объем тела, ограниченного указанными поверхностями
z=0; z=9-y^(2); x^(2)+y^(2)=9
3. Вычислить криволинейный интеграл по координатам (см. скрин)
где Lab - отрезок прямой, соединяющий точки A(2;-2) и B(-2;2).
4. Найти общее решение дифференциального уравнения первого порядка (см скрин)
5. Решить задачу Коши (см. скрин)
450 руб.
Другие работы
Современные технологии в программирование (часть 2) магистратура
Dirol340
: 22 ноября 2020
Тема: Конвертор чисел из десятичной системы счисления в систему счисления с заданным основанием.
Цель
Сформировать практические навыки реализации классов на языке C#.
Задание 1
1. Реализовать преобразователь действительных чисел со знаком из десятичной системы счисления в систему счисления с заданным основанием p, в соответствии с приведенной ниже спецификацией, используя класс. Основание системы счисления p принадлежит диапазону значений от 2 до 16.
2. Протестировать каждый метод класса.
350 руб.
Математические основы цифровой обработки сигналов (МОЦОС)
Алиса8
: 16 марта 2016
Вариант 20
1.Имеется передаточная характеристика цифрового фильтра: H(z)=(.../...) Где A0=0,99; A1=-0,34; A2=0,43-коэффициенты, выбираемые из таблицы 1. Выбор осуществляется на основании последней цифры номера студенческого билета.
В1=0,33; В2=-0,18 - коэффициенты, выбираемые из таблицы 2. Выбор осуществляется на основании предпоследней цифры номера студенческого билета...
2.Дано входное воздействие X(nT)={1,1; 0,9; 0,7; 0,5; 0,3; 0,1; 1,3; 1,5}.
3.Разрядность входного слова и разрядност
300 руб.
Диплом\Совершенствование технологического процесса ТО автомобилей\
Катя Пушкарева
: 25 ноября 2008
Совершенствование технологического процесса ТО автомобилей за счет внедрения шиномантажного участка
СОДЕРЖАНИЕ
Введение
1. Анализ производственной деятельности предприятия
1.1 Общая характеристика предприятия
2. Технологический расчет АТП
2.1. Расчет производственной программы по ТО
2.2. Расчет годового объема работ и численности производственных рабочих
2.3. Технологический расчет производственных зон, участков и складов
2.4. Расчет площадей помещений
2.5. Обобщение результатов рас
Визуальное программирование и человеко-машинное взаимодействие, контрольная, вариант 2
maksim3843
: 12 ноября 2023
1. Создать базу данных (БД), состоящую из 2-х заданных таблиц. Поля таблиц произвольные, но не менее четырех полей в каждой таблице, включая ключевое поле (поле типа +(Autoincrement)). В таблицу, которая при объединении будет подчиненной, необходимо включить поле, по которому эта таблица будет связана с первичным ключом главной таблицы.
2. Разработать Приложение для работы с БД, выполняющее следующие основные функции: просмотр, наполнение, редактирование таблиц; организация связи главный-подчи
350 руб.