Контрольная работа по дисциплине: Математический анализ (часть 2) Вариант 2. 12. 22
Состав работы
|
|
Работа представляет собой файл, который можно открыть в программе:
- Microsoft Word
Описание
1. Вычислить несобственный интеграл или доказать его расходимость 〖∫┴(-3)〗┬(-∞) xdx/(x^2+1)^2 .
2. Вычислить с помощью двойного интеграла объема тела, ограниченного указанными поверхностями z=0;z=4-x-y; x^2+y^2=4.
3. Вычислить криволинейный интеграл по координатам
∫┬(L_OA ) (xy-y^2 )dx+xdy,
Где L_OA – дуга параболы y=2x^2 от точки O(0,0) до точки A(1,2).
4. Найти общее решение дифференциального уравнения первого порядка y^' cosx=(y+1) sinx.
5. Решить задачу Коши
y^' cos^2x+y=e^tgx , y(0)=0.
2. Вычислить с помощью двойного интеграла объема тела, ограниченного указанными поверхностями z=0;z=4-x-y; x^2+y^2=4.
3. Вычислить криволинейный интеграл по координатам
∫┬(L_OA ) (xy-y^2 )dx+xdy,
Где L_OA – дуга параболы y=2x^2 от точки O(0,0) до точки A(1,2).
4. Найти общее решение дифференциального уравнения первого порядка y^' cosx=(y+1) sinx.
5. Решить задачу Коши
y^' cos^2x+y=e^tgx , y(0)=0.
Похожие материалы
Контрольная работа по дисциплине: Математический анализ (часть 2). Вариант №2
Учеба "Под ключ"
: 19 октября 2016
Вариант №2
1. Вычислить несобственный интеграл или доказать его расходимость (см. скрин)
2. Вычислить с помощью двойного интеграла объем тела, ограниченного указанными поверхностями: (см. скрин)
3. Вычислить криволинейный интеграл по координатам,
где - дуга параболы от точки до точки. (см. скрин)
4. Найти общее решение дифференциального уравнения первого порядка: (см. скрин)
5. Решить задачу Коши: (см. скрин)
450 руб.
Контрольная работа по дисциплине: Математический анализ (часть 2). Вариант №8
Учеба "Под ключ"
: 8 декабря 2022
Дистанционное обучение
Дисциплина «Математический анализ». Часть 2.
Вариант № 8
1. Вычислить несобственный интеграл или доказать его расходимость
dx/(x-2)^(2)
2. Вычислить с помощью двойного интеграла объем тела, ограниченного указанными поверхностями
z=0; z=1-y^(2); x=y^(2); x=2y^(2)+1
3. Вычислить криволинейный интеграл по координатам
y^(2)dx+x^(2)dy,
где L - верхняя половина эллипса x=acost, y=bsint, "пробегаемая" по ходу часовой стрелки.
4. Найти общее решение дифференциального уравнени
450 руб.
Контрольная работа по дисциплине: Математический анализ (часть 2). Вариант 3
Учеба "Под ключ"
: 8 декабря 2022
Дистанционное обучение
Дисциплина «Математический анализ». Часть 2.
Вариант № 3
1. Вычислить несобственный интеграл или доказать его расходимость
dx/(X^(2)+x+1)
2. Вычислить с помощью двойного интеграла объем тела, ограниченного указанными поверхностями
z=0; z=y^(2); x^(2)+y^(2)=9
3. Вычислить криволинейный интеграл по координатам
(x-1/y)dy,
где Lab - дуга параболы y=x^(2) от точки A(1,1) до точки D(2,4).
4. Найти общее решение дифференциального уравнения первого порядка
(1+x^(2))y`-2xy=(1+
450 руб.
Контрольная работа по дисциплине: Математический анализ (часть 2). Вариант №6
Roma967
: 18 августа 2019
Вариант №6
1. Вычислить несобственный интеграл или доказать его расходимость (см. скрин)
2. Вычислить с помощью двойного интеграла объем тела, ограниченного указанными поверхностями: z=0, 4z=y^(2), 2x-y=0, x+y=9
3. Вычислить криволинейный интеграл по координатам (см. скрин), где Lов - дуга параболы y=2*корень(x) от точки O(0,0) до точки B(1,2).
4. Найти общее решение дифференциального уравнения первого порядка x^(2)y'=2xy+3
5. Решить задачу Коши xy'=xe^(y/x)+y, y(1)=0
450 руб.
Контрольная работа по дисциплине: Математический анализ (часть 2) вариант 06
rusyyaaaa
: 23 июня 2019
Дисциплина «Математический анализ». Часть 2.
Вариант № 6
1. Вычислить несобственный интеграл или доказать его расходимость
2. Вычислить с помощью двойного интеграла объем тела, ограниченного указанными поверхностями
; ; ;
3. Вычислить криволинейный интеграл по координатам
,
где - дуга параболы от точки до точки .
4. Найти общее решение дифференциального уравнения первого порядка
5. Решить задачу Коши
,
Контрольная работа по дисциплине Математический анализ (часть 2). Вариант № 6
Alexbur1971
: 10 мая 2019
Контрольная работа
Дисциплина «Математический анализ». Часть 2.
Вариант № 6
1. Вычислить несобственный интеграл или доказать его расходимость
2. Вычислить с помощью двойного интеграла объем тела, ограниченного указанными поверхностями
3. Вычислить криволинейный интеграл по координатам
4. Найти общее решение дифференциального уравнения первого порядка
5. Решить задачу Коши
200 руб.
Контрольная работа по дисциплине: Математический анализ (часть 2). Вариант №5
SibGOODy
: 26 августа 2018
Вариант №5
1. Вычислить несобственный интеграл или доказать его расходимость (см. скрин).
2. Вычислить с помощью двойного интеграла объем тела, ограниченного указанными поверхностями
z=0; y+z=2; x^(2)+y^(2)=4.
3. Вычислить криволинейный интеграл по координатам (см. скрин), где Loa - дуга параболы y=x^(2)/4 от точки O(0;0) до точки A(2;1).
4. Найти общее решение дифференциального уравнения первого порядка xy'=y ln (y/x)
5. Решить задачу Коши y'=-2y+e^(3x), y(0)=1.
450 руб.
Контрольная работа по дисциплине: Математический анализ (часть 2). Вариант №1
Учеба "Под ключ"
: 25 июля 2017
Вариант №1
1. Вычислить несобственный интеграл или доказать его расходимость (см.скрин)
2. Вычислить с помощью двойного интеграла объем тела, ограниченного указанными поверхностями
z=0; z=9-y^(2); x^(2)+y^(2)=9
3. Вычислить криволинейный интеграл по координатам (см. скрин)
где Lab - отрезок прямой, соединяющий точки A(2;-2) и B(-2;2).
4. Найти общее решение дифференциального уравнения первого порядка (см скрин)
5. Решить задачу Коши (см. скрин)
450 руб.
Другие работы
ММА/ИДО Иностранный язык в профессиональной сфере (ЛТМ) Тест 20 из 20 баллов 2024 год
mosintacd
: 28 июня 2024
ММА/ИДО Иностранный язык в профессиональной сфере (ЛТМ) Тест 20 из 20 баллов 2024 год
Московская международная академия Институт дистанционного образования Тест оценка ОТЛИЧНО
2024 год
Ответы на 20 вопросов
Результат – 100 баллов
С вопросами вы можете ознакомиться до покупки
ВОПРОСЫ:
1. We have … to an agreement
2. Our senses are … a great role in non-verbal communication
3. Saving time at business communication leads to … results in work
4. Conducting negotiations with foreigners we shoul
150 руб.
Задание №2. Методы управления образовательными учреждениями
studypro
: 13 октября 2016
Практическое задание 2
Задание 1. Опишите по одному примеру использования каждого из методов управления в Вашей профессиональной деятельности.
Задание 2. Приняв на работу нового сотрудника, Вы надеялись на более эффективную работу, но в результате разочарованы, так как он не соответствует одному из важнейших качеств менеджера - самодисциплине. Он не обязателен, не собран, не умеет отказывать и т.д.. Но, тем не менее, он отличный профессионал в своей деятельности. Какими методами управления Вы во
200 руб.
Особенности бюджетного финансирования
Aronitue9
: 24 августа 2012
Содержание:
Введение
Теоретические основы бюджетного финансирования
Понятие и сущность бюджетного финансирования
Характеристика основных форм бюджетного финансирования
Анализ бюджетного финансирования образования
Понятие и источники бюджетного финансирования образования
Проблемы бюджетного финансирования образования
Основные направления совершенствования бюджетного финансирования образования
Заключение
Список использованный литературы
Цель курсовой работы – исследовать особенности бюджетного фин
20 руб.
Программирование (часть 1-я). Зачёт. Билет №2
sibsutisru
: 3 сентября 2021
ЗАЧЕТ по дисциплине “Программирование (часть 1)”
Билет 2
Определить значение переменной y после работы следующего фрагмента программы:
a = 3; b = 2 * a – 10; x = 0; y = 2 * b + a;
if ( b > y ) or ( 2 * b < y + a ) ) then begin x = b – y; y = x + 4 end;
if ( a + b < 0 ) and ( y + x > 2 ) ) then begin x = x + y; y = x – 2 end;
200 руб.