Теория вероятностей и математическая статистика. Билет №10.
Состав работы
|
|
|
|
Работа представляет собой rar архив с файлами (распаковать онлайн), которые открываются в программах:
- Microsoft Word
Описание
Экзаменационный билет No10
Вопрос 1.
Если события могут произойти одновременно, то они называются...
Варианты ответа:
зависимые.
совместные.
возможные.
_______________________________________________________________________
Вопрос 2.
Сумма двух событий А и Б — это событие, состоящее в том, что наступило ...
Варианты ответа:
либо А, либо Б.
А и Б.
А или Б.
_______________________________________________________________________
Вопрос 3.
Вычислить значение C_5^3⋅A_7^2⋅P_4.
Варианты ответа:
10080
10200
80200
756000
________________________________________________________________________________
Вопрос 4.
Карточки, на которых написано слово ЗООЛОГ перемешали и разложили в произвольном порядке. Какова вероятность, что снова получилось слово ЗООЛОГ?
Варианты ответа:
1/24
1/120
1/4
1/60
________________________________________________________________________________
Вопрос 5.
Формула n!/m!(n-m)! используется для вычисления ...
Варианты ответа:
числа перестановок из n элементов.
числа размещений из n по m элементов.
числа сочетаний из n по m элементов.
числа комбинаций из n по m элементов.
_______________________________________________________________________
Вопрос 6.
Формула P(AB)/P(B) используется для вычисления вероятности того, что ...
Варианты ответа:
произойдет событие А при условии, что В уже произошло.
произойдет событие B при условии, что A уже произошло .
событие А произошло вследствие события В.
событие Bпроизошло вследствие события A
_______________________________________________________________________
Вопрос 7.
Снайпер стреляет по мишени три раза. Вероятность попадания при первом выстреле равна 0,4, при втором — 0,9, при третьем — 0,8. Какова вероятность, снайпер попадет в мишень хотя бы один раз?
Варианты ответа:
0,512
0,988
0,896
0,024
_______________________________________________________________________
Вопрос 8.
_______________________________________________________________________
Вопрос 9.
Вероятность попадания случайной величины в интервал [a,b] равна ....
Варианты ответа:
P(a≤x≤b)=∫_a^b▒f (x)dx
P(a≤x≤b)=∫_a^b▒xf (x)dx
P(a≤x≤b)=∫_a^b▒xdx
_______________________________________________________________________
Вопрос 10.
_______________________________________________________________________
Вопрос 11.
Вероятность передать без искажений сигнал по некоторой линии связи равна 0,6. В случае искажения сигнал передается заново, и так далее, пока он не будет передан без искажения. Какова вероятность того, что сигнал потребуется передать не более двух раз?
Варианты ответа:
0,84
0,096
0,81
0,069
_______________________________________________________________________
Вопрос 12.
В магазин поступают кастрюли от двух поставщиков в равном количестве. Известно, что среди продукции от первого поставщика 1% бракованной, а от второго — 3%? Каковы шансы, что случайно купленная кастрюля бракованная?
Варианты ответа:
0,02
0,05
0,14
0,024
_______________________________________________________________________
Вопрос 13.
В магазин поступают кастрюли от двух поставщиков в равном количестве. Известно, что среди продукции от первого поставщика 1% бракованной, а от второго — 3%? Случайно купленная кастрюля оказалась бракованной. Какова вероятность, что от второго поставщика?
Варианты ответа:
0,25
0,75
0,44
0,02
_______________________________________________________________________
Вопрос 14.
Вероятность передать без искажений сигнал по некоторой линии связи равна 0,8. Какова вероятность того, что из 100 переданных сигналов без искажения передано от 65 до 85?
Варианты ответа:
0,878
0,894
0,588
0,744
_______________________________________________________________________
Вопрос 15.
Укажите формулу для вычисления вероятности того, что произойдет одно из событий А или В .
Варианты ответа:
P_B (A)=(P(A) P_A (B))/P(B) .
P(AB)=P(A) P_A (B).
P(A+B)=P(A)+P(B)-P(AB).
P_A (B)=P(AB)/P(A) .
P(A)=P(B) P_B (A)-P(B ̄ ) P_B ̄ (A)
Вопрос 1.
Если события могут произойти одновременно, то они называются...
Варианты ответа:
зависимые.
совместные.
возможные.
_______________________________________________________________________
Вопрос 2.
Сумма двух событий А и Б — это событие, состоящее в том, что наступило ...
Варианты ответа:
либо А, либо Б.
А и Б.
А или Б.
_______________________________________________________________________
Вопрос 3.
Вычислить значение C_5^3⋅A_7^2⋅P_4.
Варианты ответа:
10080
10200
80200
756000
________________________________________________________________________________
Вопрос 4.
Карточки, на которых написано слово ЗООЛОГ перемешали и разложили в произвольном порядке. Какова вероятность, что снова получилось слово ЗООЛОГ?
Варианты ответа:
1/24
1/120
1/4
1/60
________________________________________________________________________________
Вопрос 5.
Формула n!/m!(n-m)! используется для вычисления ...
Варианты ответа:
числа перестановок из n элементов.
числа размещений из n по m элементов.
числа сочетаний из n по m элементов.
числа комбинаций из n по m элементов.
_______________________________________________________________________
Вопрос 6.
Формула P(AB)/P(B) используется для вычисления вероятности того, что ...
Варианты ответа:
произойдет событие А при условии, что В уже произошло.
произойдет событие B при условии, что A уже произошло .
событие А произошло вследствие события В.
событие Bпроизошло вследствие события A
_______________________________________________________________________
Вопрос 7.
Снайпер стреляет по мишени три раза. Вероятность попадания при первом выстреле равна 0,4, при втором — 0,9, при третьем — 0,8. Какова вероятность, снайпер попадет в мишень хотя бы один раз?
Варианты ответа:
0,512
0,988
0,896
0,024
_______________________________________________________________________
Вопрос 8.
_______________________________________________________________________
Вопрос 9.
Вероятность попадания случайной величины в интервал [a,b] равна ....
Варианты ответа:
P(a≤x≤b)=∫_a^b▒f (x)dx
P(a≤x≤b)=∫_a^b▒xf (x)dx
P(a≤x≤b)=∫_a^b▒xdx
_______________________________________________________________________
Вопрос 10.
_______________________________________________________________________
Вопрос 11.
Вероятность передать без искажений сигнал по некоторой линии связи равна 0,6. В случае искажения сигнал передается заново, и так далее, пока он не будет передан без искажения. Какова вероятность того, что сигнал потребуется передать не более двух раз?
Варианты ответа:
0,84
0,096
0,81
0,069
_______________________________________________________________________
Вопрос 12.
В магазин поступают кастрюли от двух поставщиков в равном количестве. Известно, что среди продукции от первого поставщика 1% бракованной, а от второго — 3%? Каковы шансы, что случайно купленная кастрюля бракованная?
Варианты ответа:
0,02
0,05
0,14
0,024
_______________________________________________________________________
Вопрос 13.
В магазин поступают кастрюли от двух поставщиков в равном количестве. Известно, что среди продукции от первого поставщика 1% бракованной, а от второго — 3%? Случайно купленная кастрюля оказалась бракованной. Какова вероятность, что от второго поставщика?
Варианты ответа:
0,25
0,75
0,44
0,02
_______________________________________________________________________
Вопрос 14.
Вероятность передать без искажений сигнал по некоторой линии связи равна 0,8. Какова вероятность того, что из 100 переданных сигналов без искажения передано от 65 до 85?
Варианты ответа:
0,878
0,894
0,588
0,744
_______________________________________________________________________
Вопрос 15.
Укажите формулу для вычисления вероятности того, что произойдет одно из событий А или В .
Варианты ответа:
P_B (A)=(P(A) P_A (B))/P(B) .
P(AB)=P(A) P_A (B).
P(A+B)=P(A)+P(B)-P(AB).
P_A (B)=P(AB)/P(A) .
P(A)=P(B) P_B (A)-P(B ̄ ) P_B ̄ (A)
Дополнительная информация
Проверил: Храмова Т.В.
Похожие материалы
Теория вероятности и математическая статистика Билет № 10
sesh
: 17 ноября 2013
1. Дискретная случайная величина. Ряд и функция распределения. Числовые характеристики дискретной случайной величины.
2. В каждой из двух урн содержится 8 черных и 2 белых шара. Из второй урны наудачу извлечен один шар и переложен в первую. Найти вероятность того, что шар, извлеченный из первой урны, окажется черным.
3. Плотность распределения случайной величины Х имеет вид
Найти плотность распределения Y=X 3.
4. Игральная кость бросается три раза. Какова вероятность выпадения одной «шестерки
310 руб.
Теория вероятностей и математическая статистика экзамен билет 10
Антон28
: 8 августа 2025
Теория вероятностей и математическая статистика экзамен билет 10
500 руб.
Теория вероятностей и математическая статистика. Экзамен. Билет №10
Vodoley
: 18 октября 2020
1. Непрерывная двумерная случайная величина и её распределение. Плотность и функция распределения двумерной случайной величины и их свойства
2. Из урны, где находятся 8 белых и 7 черных шаров случайно вытащены 6 шаров. Какова вероятность того, что среди них будет 4 белых шара?
3. Дискретная случайная величина имеет следующий ряд распределения
Х 10 15 20 25 30
р 0,10 0,32 a 0,21 0,06
Найти величину a, математическое ожидание и среднее квадратическое отклонение этой случайной величины.
4. Н
55 руб.
Теория вероятностей и математическая статистика. Экзамен. Билет №10
BEV
: 4 октября 2020
Вопрос 1.
Если события могут произойти одновременно, то они называются...
Варианты ответа:
зависимые.
совместные.
возможные.
_______________________________________________________________________
Вопрос 2.
Сумма двух событий А и Б — это событие, состоящее в том, что наступило ...
Варианты ответа:
либо А, либо Б.
А и Б.
А или Б.
_______________________________________________________________________
Вопрос 3.
Вычислить значение C_5^3⋅A_7^2⋅P_4.
Варианты ответа:
10080
10200
8020
100 руб.
Теория вероятностей и математическая статистика. БИЛЕТ №10. Экзамен
Sergenaaaa
: 8 июля 2020
Задача 1.
Совместное распределение случайной величины X и Y задано плотность распределения вероятностей.
f(x,y)=
1)с(у+2ху), (х,у) принадлежит области D
2)0,(х,у) не принадлежит области D
Найти:
а) коэффициент с;
б) плотность распределения отдельных компонентов Х и Y;
в) вероятность попадания точки (Х,Y) в область D1;
г) совместную функцию распределения F(x,y)
Задача 2.
Известно, что вероятность выиграть хотя бы по одному лотерейному билету из трех равна 0,488. Какова вероятность выиграть по
100 руб.
Теория вероятности и математическая статистика. Экзамен. Билет №10
TAUQOT
: 29 декабря 2015
1. Непрерывная двумерная случайная величина и её распределение. Плотность и функция распределения двумерной случайной величины и их свойства
2. Из урны, где находятся 8 белых и 7 черных шаров случайно вытащены 6 шаров. Какова вероятность того, что среди них будет 4 белых шара?
3. Дискретная случайная величина имеет следующий ряд распределения
5. Двумерная дискретная случайная величина имеет таблицу распределения
Найти величину q и коэффициент корреляции этой случайной величины.
250 руб.
Теория вероятностей и математическая статистика. Экзамен. Билет №10.
Cole82
: 22 октября 2015
Билет № 10
1. Тема: Независимость событий.
Задача: Вероятность занятости первой линии связи равна 0.3, второй –0.6, третьей – 0.2. Найти вероятность того, что все три линии свободны.
2. Тема: Свойства плотности распределения.
Задача: Найти плотность по функции распределения с.в.
(функция на рисунке)
75 руб.
Теория вероятности и математическая статистика. Экзамен. Билет № 10
Alexis87
: 30 сентября 2012
Сибирский государственный университет телекоммуникаций и информатики
Дистанционное обучение
Направление «Телекоммуникации». Ускоренная подготовка
Дисциплина «Теория вероятностей»
Экзамен.
Билет № 10
1. Дискретная случайная величина. Ряд и функция распределения. Числовые характеристики дискретной случайной величины.
2. В каждой из двух урн содержится 8 черных и 2 белых шара. Из второй урны наудачу извлечен один шар и переложен в первую. Найти вероятность того, что шар, извлеченный из первой ур
100 руб.
Другие работы
Контрольная работа по дисциплине: Современные технологии программирования (часть 2). Вариант 19
Roma967
: 20 июля 2024
Ассоциативные контейнеры STL
Тема: Контейнеры STL и модульное тестирование
Цель: Сформировать практические навыки разработки абстракций данных на основе контейнеров STL и модульного тестирования средствами VisualStudio.
Задание
Реализовать абстрактный тип данных «Множество» в соответствии с вариантом задания и со спецификацией, приведённой ниже. Протестировать его, используя средства модульного тестирования VisualStudio. Тестовые наборы необходимо построить на основе критериев тестирования C
900 руб.
Відносини Китаю з Центральною та Південною Африкою
DocentMark
: 28 сентября 2013
Відносини між Китаєм й центральною та південною Африкою, мають такі значення, що перевищують межі континентів Африки та Азії. Тому, дамо відповідь на таке питання: які наслідки мають ці відносини для решти країн, для економічного та політичного положення ЄС у світі, а особливо в контексті політики ЄС стосовно країн, що розвиваються.
Економічні зміни зовнішньої політики Китаю після закінчення холодної війни. Зміни, які мали місце в міжнародних відносинах кінця 20 століття, стали, за думкою китай
Создание информационной модели
Slolka
: 2 октября 2013
При проектировании программ выясняются запросы и пожелания клиента и определяется возможный подход к решению задачи. Задача анализируется. На основе этого анализа реализуется конкретная модель в конкретной программной среде. Результаты каждого этапа проектирования используются в качестве исходного материала следующего этапа.
Анализируется текущая организация предприятия, выделяются проблемы для решения, определяются объекты отношения между ними , составляется “эскиз” текущей организации предпри
10 руб.
«Повышение эффективности удаления снежно-ледяного наката с поверхности автомобильной дороги»
ohotnikovks
: 17 апреля 2016
Пояснительная записка 80 стр+ чертежи 10 листов А1.
В дипломе рассматривается модернизация рабочего оборудования авогрейдера ГС-10.
содержание пояснительной записки:
Введение
. Технико-экономическое обоснование
Выбор состава и определение количества единиц техники
Конструкторский раздел
Разработка технологического процесса ремонта деталей
. Безопасность жизнедеятельности
Экономический раздел
Список используемых источников
Список графического материала:
1 Патентный обзор– 1 лист, формат А1
1100 руб.