Вычислительная математика. Лабораторные работы №№1-3. Вариант №7
Состав работы
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Работа представляет собой rar архив с файлами (распаковать онлайн), которые открываются в программах:
- Microsoft Word
Описание
Лабораторная работа 1
Линейная интерполяция
Задание на лабораторную работу
1. Рассчитать h – шаг таблицы функции f(x), по которой с помощью линейной интерполяции можно было бы найти промежуточные значения функции с точностью 0.0001, если табличные значения функции округлены до 4-х знаков после точки.
2. Написать программу, которая
а) выводит таблицу значений функции с рассчитанным шагом h на интервале [c, c+15h] (таблица должна содержать 2 столбца: значения аргумента и соответствующее ему округленное до 0.0001 значение функции);
б) по сформированной таблице с помощью линейной интерполяции вычисляет приближенные значения функции в точках ;
в) выводит таблицу точных и приближенных значений функции (таблица должна содержать 3 столбца: значения xi из пункта б) и соответствующие им приближенные и точные значения функции).
В качестве функции взять N – последняя цифра пароля.
Лабораторная работа No2
Приближенное решение систем линейных уравнений
Задание на лабораторную работу
1. Привести систему к виду, подходящему для метода простой итерации (если Ваша фамилия начинается с гласной буквы) или метода Зейделя (если Ваша фамилия начинается с согласной буквы).
2. Рассчитать аналитически количество итераций для решения системы линейных уравнений методом по заданию с точностью до 0.0001 для каждой переменной.
3. Написать программу решения системы линейных уравнений методом по заданию с точностью до 0.0001 для каждой переменной.
4. Вывести количество итераций, понадобившееся для достижения заданной точности, и приближенное решение системы.
где с=0.01N , N– последняя цифра пароля.
Лабораторная работа No3
Численное дифференцирование
Задание на лабораторную работу
1. Рассчитать оптимальный шаг для построения таблицы значений функции, которая позволит с наименьшей погрешностью вычислить значения по приближенной формуле центральной разностной производной, если табличные значения функции вычислены с точностью 0.0001.
2. Найти погрешность, с которой можно найти с вычисленным в пункте a) оптимальным шагом.
3. Написать программу, которая
а) выводит таблицу значений функции с рассчитанным оптимальным шагом h на интервале [c-h, c+16h] (таблица должна содержать 2 столбца: значения аргумента и соответствующее ему округленное до 0.0001 значение функции);
б) По составленной таблице вычисляет приближенные значения в точках по формуле центральной разностной производной;
в) выводит таблицу точных и приближенных значений производной (таблица должна содержать 3 столбца: значения xi из пункта б) и соответствующие им приближенные и точные значения производной).
В качестве функции взять где N – последняя цифра пароля.
Линейная интерполяция
Задание на лабораторную работу
1. Рассчитать h – шаг таблицы функции f(x), по которой с помощью линейной интерполяции можно было бы найти промежуточные значения функции с точностью 0.0001, если табличные значения функции округлены до 4-х знаков после точки.
2. Написать программу, которая
а) выводит таблицу значений функции с рассчитанным шагом h на интервале [c, c+15h] (таблица должна содержать 2 столбца: значения аргумента и соответствующее ему округленное до 0.0001 значение функции);
б) по сформированной таблице с помощью линейной интерполяции вычисляет приближенные значения функции в точках ;
в) выводит таблицу точных и приближенных значений функции (таблица должна содержать 3 столбца: значения xi из пункта б) и соответствующие им приближенные и точные значения функции).
В качестве функции взять N – последняя цифра пароля.
Лабораторная работа No2
Приближенное решение систем линейных уравнений
Задание на лабораторную работу
1. Привести систему к виду, подходящему для метода простой итерации (если Ваша фамилия начинается с гласной буквы) или метода Зейделя (если Ваша фамилия начинается с согласной буквы).
2. Рассчитать аналитически количество итераций для решения системы линейных уравнений методом по заданию с точностью до 0.0001 для каждой переменной.
3. Написать программу решения системы линейных уравнений методом по заданию с точностью до 0.0001 для каждой переменной.
4. Вывести количество итераций, понадобившееся для достижения заданной точности, и приближенное решение системы.
где с=0.01N , N– последняя цифра пароля.
Лабораторная работа No3
Численное дифференцирование
Задание на лабораторную работу
1. Рассчитать оптимальный шаг для построения таблицы значений функции, которая позволит с наименьшей погрешностью вычислить значения по приближенной формуле центральной разностной производной, если табличные значения функции вычислены с точностью 0.0001.
2. Найти погрешность, с которой можно найти с вычисленным в пункте a) оптимальным шагом.
3. Написать программу, которая
а) выводит таблицу значений функции с рассчитанным оптимальным шагом h на интервале [c-h, c+16h] (таблица должна содержать 2 столбца: значения аргумента и соответствующее ему округленное до 0.0001 значение функции);
б) По составленной таблице вычисляет приближенные значения в точках по формуле центральной разностной производной;
в) выводит таблицу точных и приближенных значений производной (таблица должна содержать 3 столбца: значения xi из пункта б) и соответствующие им приближенные и точные значения производной).
В качестве функции взять где N – последняя цифра пароля.
Дополнительная информация
Зачтено без замечаний
Похожие материалы
Вычислительная математика. Лабораторная работа №1. Вариант №7
Znich
: 7 апреля 2016
Известно, что функция f(x) удовлетворяет условию |f'' (x)|≤2c при любом x. Рассчитать шаг таблицы значений функции f(x), по которой с помощью линейной интерполяции можно было бы найти промежуточные значения функции с точностью 0.0001, если табличные значения функции округлены до 4-х знаков после запятой. Составить программу, которая:
1. Выводит таблицу значений функции с рассчитанным шагом h на интервале
2. С помощью линейной интерполяции вычисляет значения функции в точках
3. Выводит зн
90 руб.
Вычислительная математика, Лабораторные работы 1-3, вариант 7
Dmitry17
: 18 июня 2022
Вариант 7
Лабораторная работа 1 - Линейная интерполяция
Лабораторная работа 2 - Приближенное решение систем линейных уравнений
Лабораторная работа 3 - Численное дифференцирование
!!Важно: перед покупкой проверяйте соответствие заданий на скриншотах у лота с теми, что выдал преподаватель.
Язык реализации программ: Dart.
В архиве:
- исходный код программ с комментариями
- инструкция по запуску
- отчёты
500 руб.
Лабораторная работа №1. Вычислительная математика. Вариант №7. ДО СибГУТИ.
Olya
: 9 января 2018
Задание:
Известно, что функция удовлетворяет условию при любом x. Рассчитать шаг таблицы значений функции f(x), по которой с помощью линейной интерполяции можно было бы найти промежуточные значения функции с точностью 0.0001, если табличные значения функции округлены до 4-х знаков после запятой. Составить программу, которая
1.Выводит таблицу значений функции с рассчитанным шагом h на интервале [c, c+30h].
2. С помощью линейной интерполяции вычисляет значения функции в точках по таблице знач
200 руб.
Лабораторная работа №1 по дисциплине: Вычислительная математика. Вариант №7
Jack
: 28 ноября 2014
Лабораторная работа №1. Интерполяция
Известно, что функция f(x) удовлетворяет условию |f(x)''|<=2c при любом x. Рассчитать шаг таблицы значений функции f(x), по которой с помощью линейной интерполяции можно было бы найти промежуточные значения функции с точностью 0.0001, если табличные значения функции округлены до 4-х знаков после запятой. Составить программу, которая
1.Выводит таблицу значений функции с рассчитанным шагом h на интервале [c, c+30h].
2. С помощью линейной интерполяции вычисляет
250 руб.
Лабораторная работа № 1 по дисциплине: Вычислительная математика. Вариант № 7
GTV8
: 9 сентября 2012
Известно, что функция удовлетворяет условию при любом x. Рассчитать шаг таблицы значений функции f(x), по которой с помощью линейной интерполяции можно было бы найти промежуточные значения функции с точностью 0.0001, если табличные значения функции округлены до 4-х знаков после запятой. Составить программу, которая
1.Выводит таблицу значений функции с рассчитанным шагом h на интервале [c, c+30h].
2. С помощью линейной интерполяции вычисляет значения функции в точках по таблице значений фун
100 руб.
Вычислительная математика. Лабораторная работа 1. Интерполяция. Вариант 7
Nikis
: 31 октября 2011
Известно, что функция удовлетворяет условию при любом . Рассчитать шаг таблицы значений функции , по которой с помощью линейной интерполяции можно было бы найти промежуточные значения функции с точностью 0.0001, если табличные значения функции округлены до 4-х знаков после запятой. Составить программу, которая:
1.Выводит таблицу значений функции с рассчитанным шагом на интервале [c, c+30h].
2. С помощью линейной интерполяции вычисляет значения функции в точках по таблице значений фу
100 руб.
Лабораторный работы №1-3 по дисциплине "Вычислительная математика". Вариант №7
Prorabs
: 16 декабря 2019
Лабораторная No1. «Линейная интерполяция»
1. Рассчитать h– шаг таблицы функции f(x), по которой с помощью линейной интерполяции можно было бы найти промежуточные значения функции с точностью 0.0001, если табличные значения функции округлены до 4-х знаков после точки.
2. Написать программу, которая
а) выводит таблицу значений функции с рассчитанным шагом h на интервале [c, c+15h] (таблица должна содержать 2 столбца: значения аргумента и соответствующее ему округленное до 0.0001 значение функции
300 руб.
Лабораторные работы №№1-5 по дисциплине: Вычислительная математика. Вариант №7.
ДО Сибгути
: 4 февраля 2016
Лабораторная работа №1. Интерполяция
Известно, что функция f(x) удовлетворяет условию |f(x)\\\'\\\'|<=2c при любом x. Рассчитать шаг таблицы значений функции f(x), по которой с помощью линейной интерполяции можно было бы найти промежуточные значения функции с точностью 0.0001, если табличные значения функции округлены до 4-х знаков после запятой. Составить программу, которая
1.Выводит таблицу значений функции с рассчитанным шагом h на интервале [c, c+30h].
2. С помощью линейной интерполяции выч
200 руб.
Другие работы
Задача про Ипотечный кредит
reznik
: 18 апреля 2018
Ипотечный кредит на сумму 3000000 руб. выдан на 13 лет при 8 % годовых и ежегодных платежах Плата при оформление кредита составляет 1 % от суммы кредита. За досрочное погашение кредита предусмотрен штраф в размере 2 %.
Определить действительную норму процента по кредиту (стоимость заёмного капитала для заемщика) при условии его досрочного погашения в конце 11 года.
150 руб.
Хозяйственные ситуации
studypro3
: 11 января 2018
Хозяйственная ситуация 3. Рассчитайте коэффициент риска и выберите наименее рисковый вариант вложения капитала.
Данные для расчета:
Вариант А. Собственные средства инвестора – 5000 тыс. руб. Максимально возможная сумма убытка – 3500 тыс.руб.
Вариант Б. Собственные средства инвестора – 30 000 тыс.руб. Максимально возможная сумма убытка – 12000 тыс. руб.
Хозяйственная ситуация 6. Определите целесообразность страхования груза хозяйствующего субъекта.
Данные для расчета. Груз, предполагаемый перевоз
400 руб.
Лабораторные работы №№1-3 по дисциплине: Теория электрических цепей. Вариант 03, 13, 23 и тд.
ДО Сибгути
: 5 февраля 2016
Лабораторная работа №1 по дисциплине: Теория электрических цепей. Тема: «Законы Ома и Кирхгофа в резистивных цепях»
1. Цель работы:
Изучение и экспериментальная проверка законов Ома и Кирхгофа в разветвленной электрической цепи, содержащей источник и резистивные элементы.
2. Экспериментальная часть.
Установить значения сопротивлений резисторов:
R1 =100+Nx10 (Ом), где N – номер варианта (последняя цифра пароля);
N=3, R1 =100+3x10=130 Ом
R2=R3=R4=R5=R6=100 Ом
Вывод.
Лабораторная работа №2 по дис
150 руб.
Неразъёмное сварное соединение. подшипник
Laguz
: 16 февраля 2025
Практическая работа №18:
Тема «Сварное соединение деталей»
Вариант 10
Чертеж сделан в компас 21 и сохранен дополнительно формат джпг.
Файлы компаса можно просматривать и сохранять в нужный формат бесплатной программой КОМПАС-3D Viewer.
Если есть какие-то вопросы или нужно другой вариант, пишите.
150 руб.