Контрольная работа по Дискретной математике. Теория графов. Вариант №6
Состав работы
|
|
Работа представляет собой файл, который можно открыть в программе:
- Microsoft Word
Описание
Задание:
1. Дать словесное описание графа с обоснованием каждого положения (орграф, неорграф, полный, неполный, простой, плоский, планарный, дерево, лес, связен, сильно связен, не связен, бихроматический, псевдограф, мультиграф, двудольный, смешанный).
2. Задать граф перечислением вершин (узлов) и ребер (дуг), матрицей инциденций, матрицей смежности.
3. Определить следующие основные характеристики графа: число ребер (дуг), число вершин, коэффициент связности графа, степени всех вершин графа (с определением максимального значения и проверкой правильности по лемме о рукопожатиях), цикломатическое число графа (по рисунку, а также по формуле), число компонент связности, эксцентриситет, диаметр, радиус. Полученные характеристики графа необходимы для дальнейшего исследования и преобразования исходного графа.
4. Произвести вершинную раскраску графа с определением вершинного хроматического числа. Провести оценку сверху по неравенству. Провести оценку снизу по неравенству, анализ на бихроматичность (по критериям двудольности и поиску в ширину).
5. Произвести реберную раскраску графа с определением реберного хроматического индекса по графу и оценкам сверху и снизу по неравенствам.
6. Определить, является ли данный граф эйлеровым? Обосновать ответ. Указать, есть ли эйлеров цикл (применить алгоритм Флери для его определения), цепь.
При получении отрицательного ответа на данный вопрос необходимо, применяя минимальное количество известных операций на графах, преобразовать данный граф до эйлерова.
7. Определить, является ли данный граф гамильтоновым? Обосновать ответ. Указать, есть ли гамильтонов цикл, цепь.
При получении отрицательного ответа на данный вопрос необходимо, применяя минимальное количество известных операций на графах, преобразовать данный граф до гамильтонова.
8. Провести топологическую декомпозицию графа. Определить сильносвязные подграфы и представить их в виде входных, транзитных и выходных блоков.
9. С помощью алгоритма выделения минимального остовного дерева получить остов.
10. С помощью метода Магу определить вершинную независимость (внутреннюю устойчивость: максимальную, минимальную) и доминирование (внешнюю устойчивость: максимальную, минимальную). Определить ядро, клику, центр графа.
1. Дать словесное описание графа с обоснованием каждого положения (орграф, неорграф, полный, неполный, простой, плоский, планарный, дерево, лес, связен, сильно связен, не связен, бихроматический, псевдограф, мультиграф, двудольный, смешанный).
2. Задать граф перечислением вершин (узлов) и ребер (дуг), матрицей инциденций, матрицей смежности.
3. Определить следующие основные характеристики графа: число ребер (дуг), число вершин, коэффициент связности графа, степени всех вершин графа (с определением максимального значения и проверкой правильности по лемме о рукопожатиях), цикломатическое число графа (по рисунку, а также по формуле), число компонент связности, эксцентриситет, диаметр, радиус. Полученные характеристики графа необходимы для дальнейшего исследования и преобразования исходного графа.
4. Произвести вершинную раскраску графа с определением вершинного хроматического числа. Провести оценку сверху по неравенству. Провести оценку снизу по неравенству, анализ на бихроматичность (по критериям двудольности и поиску в ширину).
5. Произвести реберную раскраску графа с определением реберного хроматического индекса по графу и оценкам сверху и снизу по неравенствам.
6. Определить, является ли данный граф эйлеровым? Обосновать ответ. Указать, есть ли эйлеров цикл (применить алгоритм Флери для его определения), цепь.
При получении отрицательного ответа на данный вопрос необходимо, применяя минимальное количество известных операций на графах, преобразовать данный граф до эйлерова.
7. Определить, является ли данный граф гамильтоновым? Обосновать ответ. Указать, есть ли гамильтонов цикл, цепь.
При получении отрицательного ответа на данный вопрос необходимо, применяя минимальное количество известных операций на графах, преобразовать данный граф до гамильтонова.
8. Провести топологическую декомпозицию графа. Определить сильносвязные подграфы и представить их в виде входных, транзитных и выходных блоков.
9. С помощью алгоритма выделения минимального остовного дерева получить остов.
10. С помощью метода Магу определить вершинную независимость (внутреннюю устойчивость: максимальную, минимальную) и доминирование (внешнюю устойчивость: максимальную, минимальную). Определить ядро, клику, центр графа.
Похожие материалы
Контрольная работа по дискретная математике. Вариант №6
nastenakosenkovmailru
: 8 марта 2015
Задано универсальное множество U и множества A,B,C,D. Найти результаты действий a) - д) и каждое действие проиллюстрировать с помощью диаграммы Эйлера-Венна.
Задача II.
Ввести необходимые элементарные высказывания и записать логической формулой следующее предложение – «Если студент подготовился к экзамену плохо, то он не решает задачи и не отвечает на вопросы экзаменатора».
Задача III.
Для булевой функции найти методом преобразования минимальную ДНФ. По таблице истинности построить СКНФ. По
75 руб.
Контрольная работа по дискретной математике. Вариант№ 6
Ekaterina-Arbanakova
: 15 марта 2012
I. Задано универсальное множество U и множества A,B,C,D. Найти результаты действий a) - д) и каждое действие проиллюстрировать с помощью диаграммы Эйлера-Венна.
II. Ввести необходимые элементарные высказывания и записать логической формулой следующее предложение.
“Если студент подготовился к экзамену плохо, то он не решает задачи и не отвечает на вопросы экзаменатора”
III. Для булевой функции найти методом преобразования минимальную ДНФ. По таблице истинности построить СКНФ. По минимальной Д
60 руб.
Контрольная работа 1 Дискретная математика Вариант 6
SOKOLOV
: 27 октября 2024
Вариант 6
No1 Доказать равенства, используя свойства операций над множествами и определения операций. Проиллюстрировать при помощи диаграмм Эйлера-Венна. а) (A\C) \ (B\C) = (A\B)\C б) (A B) (C D)=(A C) (B D).
No2 Даны два конечных множества: А={a,b,c}, B={1,2,3,4}; бинарные отношения P1 A B, P2 B2. Изобразить P1, P2 графически. Найти P=(P2P1)–1. Выписать области определения и области значений всех трех отношений: P1, P2, Р. Построить матрицу [P2], проверить с ее помощью, является ли о
322 руб.
Контрольная работа по Дискретной математике. Идентификация соответствий. Вариант №6
Holoh123
: 1 июня 2021
Дано: Х= (1,5), Y= (2,3,9).
Задание: получить все соответствия, записать их формулы, изобразить диаграммы, идентифицировать все соответствия (по категориям: соответствия, отображения, функции; по видам: всюду определенное, частичное, сюръективное, инъективное, функциональное, взаимнооднозначное).
400 руб.
Контрольная работа по дискретной математике
ty4ka
: 23 сентября 2020
Вариант 15
No1 Доказать равенства, используя свойства операций над множествами и определения операций. Проиллюстрировать при помощи диаграмм Эйлера-Венна. а) (A\B) \ C = (A\C) \ B б) (A\B)C=((AB)C)\(BC).
No2 Даны два конечных множества: А={a,b,c}, B={1,2,3,4}; бинарные отношения P1 AB, P2 B2. Изобразить P1, P2 графически. Найти P = (P2P1)–1. Выписать области определения и области значений всех трех отношений: P1, P2, Р. Построить матрицу [P2], проверить с ее помощью, является ли отношени
200 руб.
Контрольная работа по дискретной математике
temirovchem
: 9 июня 2019
1.Задано универсальное множество и множества Найти результаты действий a) - д) и каждое действие проиллюстрировать с помощью диаграммы Эйлера-Венна.
а) б) в) г) д)
2. Ввести необходимые элементарные высказывания и записать логической формулой следующее предложение:
“Если оперативная память правильно установлена в контрольный компьютер, и он при запуске не выдает ошибки при проверке оперативной памяти, то оперативная память исправна”.
3. Для булевой функции найти методом преобразова
100 руб.
Контрольная работа по Дискретной математике
evgentys90x
: 13 марта 2017
Контрольная работа по Дискретной математике. Вариант № 5. Иркутский национальный исследовательский технический университет. 2016 г, оценка 4. преподаватель носырева л.л. заочно-вечерний факультет, информационные технологии, автоматизированые системы управления. без титульника, электронно вычеслительные машины, 2 курс. Экзамен. Кафедра кибернетики. Формат работы в pdf, листов в контрольной работе 19, темы множества, графы, отношения, функции, булевые функции
300 руб.
Контрольная работа по дискретной математике
ccc1981
: 13 декабря 2013
1. Задано универсальное множество и множества Найти результаты действий a) - д) и каждое действие проиллюстрировать с помощью диаграммы Эйлера-Венна.
2. Ввести необходимые элементарные высказывания и записать логической формулой следующее предложение.
“Если дискриминант квадратного уравнения неотрицательный, то уравнение имеет один корень или оно имеет два корня”.
3. Для булевой функции найти методом преобразования минимальную ДНФ. По таблице истинности построить СКНФ. По минимальной ДНФ по
75 руб.
Другие работы
Повышение эффективности ремонта технологического оборудования ООО «ПФ Инзенский деревообрабатывающий завод» применением электромеханической обработки
Рики-Тики-Та
: 14 января 2013
СОДЕРЖАНИЕ
ВВЕДЕНИЕ
1 АНАЛИЗ ПРОИЗВОДСТВЕННОЙ ДЕЯТЕЛЬНОСТИ ПРЕДПРИЯТИЯ
1.1 История становления предприятия
1.2 Технологическое оборудование на основном производстве
1.3 Соотношение простоев оборудования на основном производстве при его ремонте и обслуживании за 2010 год
1.4 Вспомогательное производство
1.5 Анализ работы Ремонтно-механической мастерской
1.6 Технологии ремонта применяемые в ремонтно-механической
мастерской
2 АНАЛИЗ СПОСОБОВ ВОССТАНОВЛЕНИЯ И УПРОЧНЕНИЯ
ДЕТАЛЕЙ
2.1 Способы повышени
825 руб.
Интернет и информационная безопасность
step85
: 3 декабря 2009
Введение
Internet и информационная безопасность несовместимы по самой природе Internet. Она родилась как чисто корпоративная сеть, однако, в настоящее время объединяет и рядовых пользователей, которые имеют возможность получить прямой доступ в Internet со своих домашних компьютеров с помощью модемов и телефонной сети общего пользования. Как известно, чем проще доступ в Сеть, тем хуже ее информационная безопасность. Однако, несмотря ни на что, число пользователей Всемирной Паутины удваивается чу
Установка штанговой скважиной насосной установки ШСНУ Насоса скважинного 25-125 ТНМ-Т 11-10-2-2 с разработкой шарнирной пружинной муфты для подвешивания колоны насосных штанг-Дипломная работа-Оборудование для добычи и подготовки нефти и газа
lesha.nakonechnyy.92@mail.ru
: 21 июня 2018
Установка штанговой скважиной насосной установки ШСНУ Насоса скважинного 25-125 ТНМ-Т 11-10-2-2 с разработкой шарнирной пружинной муфты для подвешивания колоны насосных штанг-Текст пояснительной записки выполнен на Украинском языке вы можете легко его перевести на русский язык через Яндекс Переводчик ссылка на него https://translate.yandex.ru/?lang=uk-ru или с помощью любой другой программы для перевода-Дипломная работа-Оборудование для добычи и подготовки нефти и газа
4 ОПИСАНИЕ ТЕХНИЧЕСКОГО ПР
2584 руб.
Экзаменационная работа по дисциплине: Физика (часть 2). Билет №1
Учеба "Под ключ"
: 10 декабря 2016
Билеты по физике для студентов заочного отделения
Второй семестр. Технические специальности
Билет 1
1. Свободные гармонические колебания. Характеристика колебаний: фаза, частота, период.
2. Законы теплового излучения: закон смещения Вина и Стефана-Больцмана.
300 руб.