Лабораторная работа №1-3 по дисциплине: Вычислительная математика. Вариант №3
Состав работы
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Работа представляет собой rar архив с файлами (распаковать онлайн), которые открываются в программах:
- Microsoft Word
Описание
Лабораторная работа No1. Линейная интерполяция.
Задание на лабораторную работу
Рассчитать h– шаг таблицы функции f(x), по которой с помощью линейной интерполяции можно было бы найти промежуточные значения функции с точностью 0.0001, если табличные значения функции округлены до 4-х знаков после точки.
Написать программу, которая
выводит таблицу значений функции с рассчитанным шагом hна интервале [c, c+15h] (таблица должна содержать 2 столбца: значения аргумента и соответствующее ему округленное до 0.0001 значение функции);
по сформированной таблице с помощью линейной интерполяции вычисляет приближенные значения функции в точках x_i=c+0.6h⋅i,i=1,2,...,14;
выводит таблицу точных и приближенных значений функции (таблица должна содержать 3 столбца: значенияxi из пункта б) и соответствующие им приближенные и точные значения функции).
Лабораторная работа No2
Задание к работе:
Привести систему к виду, подходящему для метода простой итерации (если Ваша фамилия начинается с гласной буквы) или метода Зейделя (если Ваша фамилия начинается с согласной буквы).
Рассчитать аналитически количество итераций для решения системы линейных уравнений методом по заданию с точностью до 0.0001 для каждой переменной.
Написать программу решения системы линейных уравнений методом по заданию с точностью до 0.0001 для каждой переменной.
Вывести количество итераций, понадобившееся для достижения заданной точности, и приближенное решение системы.
Метод Зейделя
Лабораторная работа No3. Численное дифференцирование
Рассчитать оптимальный шаг для построения таблицы значений функции, которая позволит с наименьшей погрешностью вычислить значения f^' (x) по приближенной формуле центральной разностной производной, если табличные значения функции вычислены с точностью 0.0001.
Найти погрешность, с которой можно найти f^' (x) с вычисленным в пункте a) оптимальным шагом.
Написать программу, которая
выводит таблицу значений функции с рассчитанным оптимальным шагом hна интервале [c-h, c+16h] (таблица должна содержать 2 столбца: значения аргумента и соответствующее ему округленное до 0.0001 значение функции);
Задание на лабораторную работу
Рассчитать h– шаг таблицы функции f(x), по которой с помощью линейной интерполяции можно было бы найти промежуточные значения функции с точностью 0.0001, если табличные значения функции округлены до 4-х знаков после точки.
Написать программу, которая
выводит таблицу значений функции с рассчитанным шагом hна интервале [c, c+15h] (таблица должна содержать 2 столбца: значения аргумента и соответствующее ему округленное до 0.0001 значение функции);
по сформированной таблице с помощью линейной интерполяции вычисляет приближенные значения функции в точках x_i=c+0.6h⋅i,i=1,2,...,14;
выводит таблицу точных и приближенных значений функции (таблица должна содержать 3 столбца: значенияxi из пункта б) и соответствующие им приближенные и точные значения функции).
Лабораторная работа No2
Задание к работе:
Привести систему к виду, подходящему для метода простой итерации (если Ваша фамилия начинается с гласной буквы) или метода Зейделя (если Ваша фамилия начинается с согласной буквы).
Рассчитать аналитически количество итераций для решения системы линейных уравнений методом по заданию с точностью до 0.0001 для каждой переменной.
Написать программу решения системы линейных уравнений методом по заданию с точностью до 0.0001 для каждой переменной.
Вывести количество итераций, понадобившееся для достижения заданной точности, и приближенное решение системы.
Метод Зейделя
Лабораторная работа No3. Численное дифференцирование
Рассчитать оптимальный шаг для построения таблицы значений функции, которая позволит с наименьшей погрешностью вычислить значения f^' (x) по приближенной формуле центральной разностной производной, если табличные значения функции вычислены с точностью 0.0001.
Найти погрешность, с которой можно найти f^' (x) с вычисленным в пункте a) оптимальным шагом.
Написать программу, которая
выводит таблицу значений функции с рассчитанным оптимальным шагом hна интервале [c-h, c+16h] (таблица должна содержать 2 столбца: значения аргумента и соответствующее ему округленное до 0.0001 значение функции);
Дополнительная информация
Оценка: Зачет
Дата оценки: 15.11.2021
Помогу с вашим вариантом, другой работой, дисциплиной или онлайн-тестом.
E-mail: sneroy20@gmail.com
E-mail: ego178@mail.ru
Дата оценки: 15.11.2021
Помогу с вашим вариантом, другой работой, дисциплиной или онлайн-тестом.
E-mail: sneroy20@gmail.com
E-mail: ego178@mail.ru
Похожие материалы
Лабораторные работы №1-3 По дисциплине: Вычислительная математика. Вариант 3
xtrail
: 22 июля 2024
Лабораторная работа №1
«Линейная интерполяция»
Задание на лабораторную работу
1. Рассчитать h - шаг таблицы функции f(x), по которой с помощью линейной интерполяции можно было бы найти промежуточные значения функции с точностью 0.0001, если табличные значения функции округлены до 4-х знаков после точки.
2. Написать программу, которая
а) выводит таблицу значений функции с рассчитанным шагом h на интервале [c, c+15h] (таблица должна содержать 2 столбца: значения аргумента и соответствующее ему о
900 руб.
Лабораторные работы №№1-3 по дисциплине Вычислительная математика
aker
: 26 апреля 2021
Лабораторные работы 1-3 по дисциплине Вычислительная математика Вариант 1
500 руб.
Лабораторная работа №1 по дисциплине "Вычислительная математика" (вариант 3)
Greenberg
: 29 августа 2020
Задание на лабораторную работу
1. Рассчитать h– шаг таблицы функции f(x), по которой с помощью линейной интерполяции можно было бы найти промежуточные значения функции с точностью 0.0001, если табличные значения функции округлены до 4-х знаков после точки.
2. Написать программу, которая
а) выводит таблицу значений функции с рассчитанным шагом hна интервале [c, c+15h] (таблица должна содержать 2 столбца: значения аргумента и соответствующее ему округленное до 0.0001 значение функции);
б) по сфор
120 руб.
Лабораторная работа № 1 по дисциплине "Вычислительная математика". Вариант №3.
hunter911
: 15 сентября 2012
Лабораторная работа № 1 по вычислительной математике, 2 семестр. Тема: Интерполяция.
Известно, что функция удовлетворяет условию при любом x. Рассчитать шаг таблицы значений функции f(x), по которой с помощью линейной интерполяции можно было бы найти промежуточные значения функции с точностью 0.0001, если табличные значения функции округлены до 4-х знаков после запятой. Составить программу, которая
1.Выводит таблицу значений функции с рассчитанным шагом h на интервале [c, c+30h].
2. С помощью
100 руб.
Вычислительная математика. Лабораторная работа №1. Вариант №3.
Дмитрий Николаевич
: 19 октября 2018
Вычислительная математика. Лабораторная работа 1. Вариант No3.
Линейная интерполяция
Присылаемый на проверку архив должен содержать 2 файла:
файл отчета, содержащий титульный лист, условие задачи, результаты аналитических расчетов, формулы используемых методов, исходный текст программы (с указанием языка реализации) и результаты работы программы (можно в виде скриншотов);
файл с исходным текстом программы (программу можно писать на любом языке программирования).
Задание на лабораторную работ
370 руб.
Лабораторная работа №1, Вариант №3. Вычислительная математика..
Jersey
: 24 октября 2016
Функция f(x)=2c3·sin(x/c),
с=N+1=3+1=4,
N – последняя цифра пароля,
i mod 4 – остаток от деления i на 4.
Известно, что функцияf(x) удовлетворяет условию |f”(x)|≤2c при любом x. Рассчитать шаг таблицы значений функции f(x), по которой с помощью линейной интерполяции можно было бы найти промежуточные значения функции с точностью 0.0001, если табличные значения функции округлены до 4-х знаков после запятой. Составить программу, которая:
1.Выводит таблицу значений функции с рассчитанным шагом h
70 руб.
Лабораторные работы №№1-3 по дисциплине: Вычислительная математика, Вариант №1
IT-STUDHELP
: 20 августа 2021
Лабораторная работа No1. Линейная интерполяция.
Задание на лабораторную работу
1. Рассчитать h– шаг таблицы функции f(x), по которой с помощью линейной интерполяции можно было бы найти промежуточные значения функции с точностью 0.0001, если табличные значения функции округлены до 4-х знаков после точки.
2. Написать программу, которая
а) выводит таблицу значений функции с рассчитанным шагом hна интервале [c, c+15h] (таблица должна содержать 2 столбца: значения аргумента и соответствующее ему ок
600 руб.
Лабораторные работы №1-3 по дисциплине: Вычислительная математика. Вариант 4
Roma967
: 11 января 2025
Лабораторная работа №1
«Линейная интерполяция»
Задание на лабораторную работу
1. Рассчитать h - шаг таблицы функции f(x), по которой с помощью линейной интерполяции можно было бы найти промежуточные значения функции с точностью 0.0001, если табличные значения функции округлены до 4-х знаков после точки.
2. Написать программу, которая
а) выводит таблицу значений функции с рассчитанным шагом hна интервале [c, c+15h] (таблица должна содержать 2 столбца: значения аргумента и соответствующее ему ок
1200 руб.
Другие работы
ДМЧ.018.000.00 Домкрат деталирование
coolns
: 12 октября 2018
ДМЧ.018.000.00 СБ_Домкрат
ДМЧ.018.101.00_Корпус
ДМЧ.018.101.00_Корпус аксонометрия
ДМЧ.018.102.00_Шайба
ДМЧ.018.401.00_Втулка
ДМЧ.018.402.00_Винт подъемный
ДМЧ.018.403.00_Головка
Открываются чертежи и модели в компасе версии 13,14,15,16,17
240 руб.
Вычислительная математика. Экзамен. билет №15
мила57
: 21 июля 2020
1. Определите, какое равенство точнее (найдите относительные погрешности).
или .
2. Составьте таблицу значений функции на интервале [1; 1.6] с шагом
h = 0.2 (значения функции округлить до 3-х знаков). По составленной таблице постройте интерполяционный многочлен Ньютона и найдите . Оцените погрешность полученного значения.
300 руб.
Шпаргалки.Розміщення продуктивних сил
evelin
: 24 апреля 2013
Предмет курсу Розміщення продуктивних сил
Загальні закономірності розміщення продуктивних сил, їх суть та значення
Основні принципи розміщення продуктивних сил, їх суть та значення
Основні фактори РПС, їх суть
Ек-не районування, його суть та значення
Поняття економічний район, його суть. Обєктивний характер формування економічних районів
Основні принципи економічного районування, їх суть
Спеціалізація і комплексний розвиток економічних районів
Районний господарський комплекс та його галузева стр
5 руб.
Экзамен по дисциплине Математический анализ (часть 1), Билет№10
spring2016
: 20 февраля 2018
Билет № 10
1. Формула Тейлора. Гиперболические функции.
Ответ:
2. Вычислить производные функций
3. Провести полное исследование функции и построить её график:
4. Исследовать на экстремум функцию двух переменных:
5. Найти неопределенные интегралы
390 руб.