Методы машинного обучения. Вариант №7
Состав работы
|
|
|
|
|
|
|
|
Работа представляет собой rar архив с файлами (распаковать онлайн), которые открываются в программах:
- Microsoft Word
Описание
Задание на лабораторную работу
Общее задание является единым для всех вариантов, вариант влияет только на тип входных данных и способ ввода. Способов ввода будет 2:
Создать таблицу с данными и сохранить её в текстовом файле, данные считывать из этого файла
Данные задаются при помощи функции
При формировании данных необходимо создать не менее 30 пар значений. Необходимо написать скрипт, который будет считывать/формировать данные, по этим данным стоится наиболее подходящая модель линейной регрессии. При помощи полученной модели стоится прогнозное значение для заданного значения независимой переменной. Исходные данные и прогнозное значение отображаются на графике, который необходимо приложить к отчёту.
Отчёт по лабораторной работе включает в себя текст задания в соответствии с вариантом, исходный код полученного скрипта с поясняющими комментариями, вывод исходных данных в табличном виде, полученное значение прогноза для заданного в варианте значения независимой переменной, полный вывод работы скрипта и график. Степень полинома для построения модели студенту необходимо определить самостоятельно.
Для защиты лабораторной работы будут предложены контрольные вопросы, соответствующие теме и дополнительное контрольное значение, для которого нужно будет вычислить прогноз при помощи полученного скрипта.
Варианты задания:
Способ ввода данных 1):
1. Данные о машинах. Таблица состоит из 4х столбцов: год выпуска машины (диапазон 1930 – 2010), максимальная скорость машины (диапазон 60-200 км/ч), скорость разгона (за какое время скорость машины увеличивается на 1 км/ч, диапазон 0.01-1 с), мощность двигателя в лошадиных силах (диапазон 25-300). Генерировать данные необходимо приближенными к реальности. Зависимая переменная – время разгона машины до максимальной, независимая переменная – мощность двигателя. Контрольное значение для прогноза 145 л.с..
2. Данные об абитуриентах. Будем считать, что все абитуриенты уже много лет сдают 3 выпускных экзамена (математика, русский, физика) по 100 балльной системе. 4 столбца – год поступления (диапазон 1970-2010), средний балл по области по математике (диапазон 30-100), по русскому, по физике. Зависимая переменная – средняя сумма баллов, независимая переменная – средний балл по математике. Контрольное значение для прогноза 72.25.
3. Курс рубля. 3 столбца – день наблюдения (диапазон 1-1000), курс рубля к доллару (диапазон 1-100, числа дробные), курс рубля к евро (диапазон 1-100, числа дробные), дни наблюдения должны быть упорядочены. Зависимая переменная – стоимость бивалютной корзины, независимая переменная – день наблюдения. Контрольное значение для прогноза 1001.
4. Цены акций нефтяных компаний. 3 столбца – день наблюдения (диапазон 1-1000), цена за баррель нефти (1-200$, число дробное), стоимость акции (0.1-1000$). Зависимой переменной является стоимость акции, независимой – цена за баррель. Контрольное значение для прогноза 100.
5. Зависимость роста детей от роста родителей. 3 столбца – рост отца (150-220 см), рост матери (150-220 см), средний рост всех взрослых детей пары (150-220 см), все числа дробные до 2х знаков после запятой. Зависимая переменная – средний рост детей, независимая переменная – средний рост родителей (рост отца+рост матери / 2). Контрольное значение для прогноза 185 см.
Способ ввода данных 2):
6. Y=sin^2X+log_2X. Диапазон X: 0.1-10. Контрольное значение для прогноза X=9.35.
7. Y=1/X+log_5X. Диапазон Х: 0.1-10. Контрольное значение для прогноза X=6.75.
8. Y=X^2/log_10X . Диапазон Х: 2-10. Контрольное значение для прогноза Х=7.5.
9. Y=sin^22X×cos(1/X). Диапазон Х: 1-10. Контрольное значение для прогноза Х=11.
10. Y=X^(1/2)+tg(X). Диапазон X: 1-10. Контрольное значение для прогноза Х=5.5.
Общее задание является единым для всех вариантов, вариант влияет только на тип входных данных и способ ввода. Способов ввода будет 2:
Создать таблицу с данными и сохранить её в текстовом файле, данные считывать из этого файла
Данные задаются при помощи функции
При формировании данных необходимо создать не менее 30 пар значений. Необходимо написать скрипт, который будет считывать/формировать данные, по этим данным стоится наиболее подходящая модель линейной регрессии. При помощи полученной модели стоится прогнозное значение для заданного значения независимой переменной. Исходные данные и прогнозное значение отображаются на графике, который необходимо приложить к отчёту.
Отчёт по лабораторной работе включает в себя текст задания в соответствии с вариантом, исходный код полученного скрипта с поясняющими комментариями, вывод исходных данных в табличном виде, полученное значение прогноза для заданного в варианте значения независимой переменной, полный вывод работы скрипта и график. Степень полинома для построения модели студенту необходимо определить самостоятельно.
Для защиты лабораторной работы будут предложены контрольные вопросы, соответствующие теме и дополнительное контрольное значение, для которого нужно будет вычислить прогноз при помощи полученного скрипта.
Варианты задания:
Способ ввода данных 1):
1. Данные о машинах. Таблица состоит из 4х столбцов: год выпуска машины (диапазон 1930 – 2010), максимальная скорость машины (диапазон 60-200 км/ч), скорость разгона (за какое время скорость машины увеличивается на 1 км/ч, диапазон 0.01-1 с), мощность двигателя в лошадиных силах (диапазон 25-300). Генерировать данные необходимо приближенными к реальности. Зависимая переменная – время разгона машины до максимальной, независимая переменная – мощность двигателя. Контрольное значение для прогноза 145 л.с..
2. Данные об абитуриентах. Будем считать, что все абитуриенты уже много лет сдают 3 выпускных экзамена (математика, русский, физика) по 100 балльной системе. 4 столбца – год поступления (диапазон 1970-2010), средний балл по области по математике (диапазон 30-100), по русскому, по физике. Зависимая переменная – средняя сумма баллов, независимая переменная – средний балл по математике. Контрольное значение для прогноза 72.25.
3. Курс рубля. 3 столбца – день наблюдения (диапазон 1-1000), курс рубля к доллару (диапазон 1-100, числа дробные), курс рубля к евро (диапазон 1-100, числа дробные), дни наблюдения должны быть упорядочены. Зависимая переменная – стоимость бивалютной корзины, независимая переменная – день наблюдения. Контрольное значение для прогноза 1001.
4. Цены акций нефтяных компаний. 3 столбца – день наблюдения (диапазон 1-1000), цена за баррель нефти (1-200$, число дробное), стоимость акции (0.1-1000$). Зависимой переменной является стоимость акции, независимой – цена за баррель. Контрольное значение для прогноза 100.
5. Зависимость роста детей от роста родителей. 3 столбца – рост отца (150-220 см), рост матери (150-220 см), средний рост всех взрослых детей пары (150-220 см), все числа дробные до 2х знаков после запятой. Зависимая переменная – средний рост детей, независимая переменная – средний рост родителей (рост отца+рост матери / 2). Контрольное значение для прогноза 185 см.
Способ ввода данных 2):
6. Y=sin^2X+log_2X. Диапазон X: 0.1-10. Контрольное значение для прогноза X=9.35.
7. Y=1/X+log_5X. Диапазон Х: 0.1-10. Контрольное значение для прогноза X=6.75.
8. Y=X^2/log_10X . Диапазон Х: 2-10. Контрольное значение для прогноза Х=7.5.
9. Y=sin^22X×cos(1/X). Диапазон Х: 1-10. Контрольное значение для прогноза Х=11.
10. Y=X^(1/2)+tg(X). Диапазон X: 1-10. Контрольное значение для прогноза Х=5.5.
Дополнительная информация
Оценка: Зачет
Дата оценки: 15.11.2021
Помогу с вашим вариантом, другой работой, дисциплиной или онлайн-тестом.
E-mail: sneroy20@gmail.com
E-mail: ego178@mail.ru
Дата оценки: 15.11.2021
Помогу с вашим вариантом, другой работой, дисциплиной или онлайн-тестом.
E-mail: sneroy20@gmail.com
E-mail: ego178@mail.ru
Похожие материалы
Методы машинного обучения. Вариант №7
IT-STUDHELP
: 15 ноября 2021
Контрольная работа по методам классификации
Выбор варианта: N = 7
Вариант выборки для метода ближайших соседей определяется по формуле:
N_в=((N+13)mod11)+1=10.
Обучающая последовательность и тестовый объект:
10) (X,Y)={ (6,5,1), (1,9,1), (1,9,1), (1,6,1), (8,4,1), (14,11,2), (13,13,2), (6,7,2), (12,11,2), (13,9,2), (9,7,2)}: тестовый объект x’=(7,3).
Вариант весовой функции определяется по формуле:
N_вф=((N+7)mod4)+1=3.
Весовая функция:
3) — метод парзеновского окна фиксированной ширины
1000 руб.
«Методы машинного обучения»
Илья272
: 5 ноября 2023
Контрольная работа состоит из нескольких заданий. От варианта студента зависят входные данные, для которых будут решаться задания, а также некоторые особенности выполнения заданий.
Всем студентам предоставляются наборы данных, в зависимости от варианта, для этих данных необходимо:
1) Построить классификатор на основе метода ближайших k соседей и определить класс тестового значения (описание метода можно найти по ссылке). От варианта зависят весовая функция и значение k.
2) Построить классифик
1300 руб.
«Методы машинного обучения»
Илья272
: 5 ноября 2023
Общее задание является единым для всех вариантов, вариант влияет только на тип входных данных и способ ввода. Способов ввода будет 2:
1) Создать таблицу с данными и сохранить её в текстовом файле, данные считывать из этого файла
2) Данные задаются при помощи функции
При формировании данных необходимо создать не менее 30 пар значений. Необходимо написать скрипт, который будет считывать/формировать данные, по этим данным стоится наиболее подходящая модель линейной регрессии. При помощи полученно
700 руб.
Методы машинного обучения. Вариант №1
IT-STUDHELP
: 24 ноября 2021
Контрольная работа по методам классификации
Выбор варианта: N = 1
Вариант выборки для метода ближайших соседей определяется по формуле:
N_в=((N+13)mod11)+1=4.
Обучающая последовательность и тестовый объект:
4) (X,Y)={(7,9,1), (2,5,1), (5,6,1), (8,6,1), (7,6,1), (7,9,2), (14,7,2), (14,2,2), (6,7,2), (10,3,2), (11,9,2), (9,1,2)}: тестовый объект x’=(12,12).
Вариант весовой функции определяется по формуле:
N_вф=((N+7)mod4)+1=3.
Весовая функция:
3) — метод парзеновского окна фиксированной ши
1000 руб.
Методы машинного обучения. Билет №6
IT-STUDHELP
: 24 ноября 2021
Билет №6
1) Что такое правило Хэбба?
2) Что такое сингулярное разложение? Как оно используется для решения задачи наименьших квадратов?
350 руб.
Методы машинного обучения. Вариант №8
IT-STUDHELP
: 15 ноября 2021
Задание на лабораторную работу
Общее задание является единым для всех вариантов, вариант влияет только на тип входных данных и способ ввода. Способов ввода будет 2:
Создать таблицу с данными и сохранить её в текстовом файле, данные считывать из этого файла
Данные задаются при помощи функции
При формировании данных необходимо создать не менее 30 пар значений. Необходимо написать скрипт, который будет считывать/формировать данные, по этим данным стоится наиболее подходящая модель линейной регрес
500 руб.
Методы машинного обучения. Вариант №8
IT-STUDHELP
: 15 ноября 2021
Выбор варианта:
N = 8
Вариант выборки для метода ближайших соседей определяется по формуле:
N_в=((N+13)mod11)+1=11
Вариант весовой функции определяется по формуле:
N_вф=((N+7)mod4)+1=4
Вариант выборки для метода построения решающего дерева определяется по формуле:
N_вд=((N*N+2)mod11)+1=1
Обучающая последовательность и тестовый объект для метода ближайших соседей:
11) (X,Y)={ (7,2,1), (8,1,1), (8,7,1), (8,2,1), (9,9,1), (6,8,1), (13,8,2), (6,1,2), (11,8,2), (4,12,3), (7,14,3), (1,8,3), (9,6,3)}
1000 руб.
Методы машинного обучения. Билет №1
IT-STUDHELP
: 15 ноября 2021
Билет №1
1) Как определяется понятие отступа в метрических алгоритмах классификации?
2) Что такое ядерное сглаживание в регрессии?
350 руб.
Другие работы
Основы сетевого планирования в строительстве. Вариант №2.
studypro2
: 15 октября 2017
Выполните расчет сетевого графика, в том числе:
1) введите обозначения (ключ к сетевому графику) (0,25 балла);
2) необходимо пронумеровать события (0,25 балла);
3) найти и обозначить критический путь сетевого графика (0,5 балла);
4) определить ранние сроки работ (раннее начало) (0,75 балла);
5) определить поздние сроки работ (позднее окончание) (0,75 балла);
6) определить частные резервы работ (1,25 балла);
7) определить общие резервы работ (1,25 балла);
8) рассчитанные параметры необход
300 руб.
Термодинамика и теплопередача СамГУПС 2012 Задача 11 Вариант 9
Z24
: 9 ноября 2025
В пароперегревателе котельного агрегата за счет подведенной теплоты q к 1 к г водяного пара при постоянном давлении p температура пара повысилась до значения t. Определить постоянные пара и его параметры до пароперегревателя (температуру, удельный объем, энтальпию, внутреннюю энергию и энтропию). Решение задачи иллюстрировать i – s диаграммой.
150 руб.
Парогенераторная установка Авторское свидетельство №2105926, Парогенерирующая установка Авторское свидетельство №2055265, Авторское свидетельство №2159389, Авторское свидетельство №2159389, Авторское свидетельство №5840, Парогенераторная установка Авторск
https://vk.com/aleksey.nakonechnyy27
: 31 мая 2016
Парогенераторная установка Авторское свидетельство №2105926, Парогенерирующая установка Авторское свидетельство №2055265, Авторское свидетельство №2159389, Авторское свидетельство №2159389, Авторское свидетельство №5840, Парогенераторная установка Авторское свидетельство №1603907-(Формат Компас-CDW, Autocad-DWG, Adobe-PDF, Picture-Jpeg)-Чертеж-Нефтегазопромысловое оборудование-Патент-Патентно-информационный обзор-Курсовая работа-Дипломная работа
696 руб.
Работа с графикой - Лабораторная работа №2 по дисциплине: Информатика. Вариант общий
Roma967
: 21 ноября 2023
Лабораторная работа №2
«Работа с графикой»
В лабораторной работе рассматривается построение графиков функций на плоскости и геометрических фигур в пространстве. Оба задания делаются в одной книге на разных листах.
Часть 1. Графическое решение систем уравнений
Решить графически систему уравнений:
{y=ln x
{y=-2x+1
в диапазоне x э [0; 2; 3] с шагом D=0,2
Часть 2. Поверхности в трёхмерном пространстве.
Задание.
1. Построить верхнюю часть эллипсоида:
(x^(2)/4) + (y^(2)/9) + (z^(2)/4) = 1
Диапаз
350 руб.