«Теория вероятностей и математическая статистика». Вариант №1
Состав работы
|
|
|
|
Работа представляет собой zip архив с файлами (распаковать онлайн), которые открываются в программах:
- Microsoft Word
Описание
Задания работы.
Задача № 1: Вероятность появления поломок на каждой из k соединительных линий равна p. Какова вероятность того, что хотя бы две линии исправны?
p=0,1
k=4
Задача № 2: В одной урне K белых шаров и L чёрных шаров, а в другой – M белых и N чёрных. Из первой урны случайным образом вынимают P шаров и опускают во вторую урну. После этого из второй урны также случайно вынимают R шаров. Найти вероятность того, что все шары, вынутые из второй урны, белые.
K=5; L=5; M=4; N=7; P=2; R=3
Задача № 3: В типографии имеется K печатных машин. Для каждой машины вероятность того, что она работает в данный момент, равна P. Построить ряд распределения числа работающих машин, построить функцию распределения этой случайной величины, найти МО, дисперсию, а также вероятность того, что число работающих машин будет не больше R.
K=4; P=0,2; R=2
Задача № 4: Непрерывная случайная величина задана ее плотностью распределения
Найти параметр С, функцию распределения, математическое ожидание, дисперсию, вероятность попадания случайной величины в интервал [2, 3] и квантиль порядка p=0,7.
Задача № 5: Суточное потребление электроэнергии исправной печью является случайной величиной, распределенной по нормальному закону со средним 1000 кВт/ч и СКО . Если суточное потребление превысит 1100 кВт, то по инструкции печь отключают и ремонтируют. Найти вероятность ремонта печи. Каким должно быть превышение по инструкции, чтобы вероятность ремонта печи была равна 0,02?
Отчет содержит решение всех задач. Объем отчета составляет 15 страниц формата А4.
Задача № 1: Вероятность появления поломок на каждой из k соединительных линий равна p. Какова вероятность того, что хотя бы две линии исправны?
p=0,1
k=4
Задача № 2: В одной урне K белых шаров и L чёрных шаров, а в другой – M белых и N чёрных. Из первой урны случайным образом вынимают P шаров и опускают во вторую урну. После этого из второй урны также случайно вынимают R шаров. Найти вероятность того, что все шары, вынутые из второй урны, белые.
K=5; L=5; M=4; N=7; P=2; R=3
Задача № 3: В типографии имеется K печатных машин. Для каждой машины вероятность того, что она работает в данный момент, равна P. Построить ряд распределения числа работающих машин, построить функцию распределения этой случайной величины, найти МО, дисперсию, а также вероятность того, что число работающих машин будет не больше R.
K=4; P=0,2; R=2
Задача № 4: Непрерывная случайная величина задана ее плотностью распределения
Найти параметр С, функцию распределения, математическое ожидание, дисперсию, вероятность попадания случайной величины в интервал [2, 3] и квантиль порядка p=0,7.
Задача № 5: Суточное потребление электроэнергии исправной печью является случайной величиной, распределенной по нормальному закону со средним 1000 кВт/ч и СКО . Если суточное потребление превысит 1100 кВт, то по инструкции печь отключают и ремонтируют. Найти вероятность ремонта печи. Каким должно быть превышение по инструкции, чтобы вероятность ремонта печи была равна 0,02?
Отчет содержит решение всех задач. Объем отчета составляет 15 страниц формата А4.
Дополнительная информация
Год сдачи: 2019
Преподаватель: Разинкина Т.Э.
Работа зачтена без замечаний.
Рекомендую использовать представленные материалы в качестве методической помощи для выполнения своих работ.
Преподаватель: Разинкина Т.Э.
Работа зачтена без замечаний.
Рекомендую использовать представленные материалы в качестве методической помощи для выполнения своих работ.
Похожие материалы
Теория вероятностей и математическая статистика. Вариант №1
dralex
: 4 ноября 2019
Контрольная работа "Теория вероятностей и математическая статистика" Вариант №1
Задание 1
Сколько 4-х буквенных слов можно составить из букв слова К А Р П ?
Задание 2
Спортсмен попадает в основной состав команды с вероятностью 0,6, а в запас - с вероятностью 0,4. Спортсмен из основного состава команды участвует в соревновании с вероятностью 0,9, из запаса - с вероятностью 0,2. Найти вероятность участия в соревновании произвольно выбранного спортсмена.
Задание 3
Найти математическое ожидание,
150 руб.
Теория вероятностей и математическая статистика, вариант №1
cotikbant
: 13 сентября 2017
1. Пять человек рассаживаются на скамейке в случайном порядке. Среди них есть два брата. Найти вероятность того, что братья займут крайние места.
2. В команде 12 спортсменов. Из них первые четверо выполняют упражнение на «отлично» с вероятностью 0,8, трое других – с вероятностью 0,6, а остальные – с вероятностью 0,2. Случайно выбранный спортсмен из этой группы выполнил упражнение на «отлично». Какова вероятность, что он из первой четверки?
3. В оперативную часть поступает в среднем одно сообще
50 руб.
Теория вероятностей и математическая статистика. Вариант №1
vviris
: 27 августа 2016
Контрольная работа №1
180 руб.
Теория вероятностей и математическая статистика. Вариант №1
kosten854
: 29 марта 2016
Вариант № 1
1. Пять человек рассаживаются на скамейке в случайном порядке. Среди них есть два брата. Найти вероятность того, что братья займут крайние места.
2. В команде 12 спортсменов. Из них первые четверо выполняют упражнение на «отлично» с вероятностью 0,8, трое других – с вероятностью 0,6, а остальные – с вероятностью 0,2. Случайно выбранный спортсмен из этой группы выполнил упражнение на «отлично». Какова вероятность, что он из первой четверки?
3. В оперативную часть
100 руб.
Теория вероятности и математическая статистика. Вариант №1
bap2
: 4 сентября 2014
Вариант №01
10.1. В каждой из двух урн содержится 6 черных и 4 белых шара. Из первой урны наудачу извлечен один шар и переложен во вторую. Найти вероятность того, что шар, извлеченный из второй урны, окажется черным.
11.1. Среднее число вызовов, поступающих на АТС в 1 мин, равно четырём. Найти вероятность того, что за 2 мин поступит: а) 6 вызовов; б) менее шести вызовов; в) не менее шести вызовов. Предполагается, что поток вызовов – простейший.
12.1. Требуется найти: а) математическое ожидани
50 руб.
Теория вероятностей и математическая статистика
Dirol340
: 11 декабря 2022
Задание 1.
Сколько 4-х буквенных слов можно составить из букв слова УКУС?
Решение: Переставить буквы в слове можно 4! Способами. В слове 2 одинаковые буквы: У – две буквы. Если менять местами эти буквы в конкретной расстановке, то слова будут получаться одинаковые. Следовательно, общее число слов, составленных перестановкой букв из слова УКУС будет равно:
Задание 2.
В автопарке имеются автомобили трех марок, всех поровну. Автомобиль первой марки исправен с вероятностью 0,8, второй марки с
250 руб.
Теория вероятностей и математическая статистика
viktoriya199000
: 16 мая 2022
Задача выполнена в ручную, на бумаге.
50 руб.
Теория вероятностей и математическая статистика
viktoriya199000
: 16 мая 2022
Задача выполнена в ручную, на бумаге
50 руб.
Другие работы
Организация работ по предотвращению распространения низовых пожаров с разработкой устройства для нарезания минерализованных полос на базе трактора К-701
superdiplom
: 25 декабря 2014
Диплом записка 144 листа и 9 листов А1
Чертежи выполнены в CorelDraw и Компас:1. Анализ пожаров;Классификация пожаров и их характеристика;
3. Меры предупреждения лесных пожаров; 4. Определение состояния пожарной безопасности в лесу; 5. Блок-схема функционирования при угрозе ЧС;
6. Канавокопатель на базе трактора К-701 с газо-воздушной смазкой; 7. Рабочий орган канавокопателя с газо-воздушной смазкой; 8. Деталировка;9. Технико-экономические показатели
ВВЕДЕНИЕ
1. АНАЛИЗ ПРОБЛЕМЫ. ЦЕЛЬ И ЗАДАЧИ И
500 руб.
Датчик - реле уровня жидкости двухпозиционный ДРУ-1ПМ, Микропроцессорный преобразователь уровня буйковый САПФИР-22МП-ДУ, Датчики - реле уровня РОС 101, Сигнализатор уровня СУС - 161-Чертеж-Патент-Патентно-информационный обзор-Курсовая работа-Дипломная раб
https://vk.com/aleksey.nakonechnyy27
: 30 мая 2016
Датчик - реле уровня жидкости двухпозиционный ДРУ-1ПМ, Микропроцессорный преобразователь уровня буйковый САПФИР-22МП-ДУ, Датчики - реле уровня РОС 101, Сигнализатор уровня СУС - 161-(Формат Компас-CDW, Autocad-DWG, Adobe-PDF, Picture-Jpeg)-Чертеж-Нефтегазопромысловое оборудование-Патент-Патентно-информационный обзор-Курсовая работа-Дипломная работа
596 руб.
Программирование управляющих систем. Лабораторная работа 1. Вариант 4.
zhekaersh
: 17 февраля 2015
Лабораторная работа № 1
по материалу первой главы курса "Процессы и нити"
В данной лабораторной работе предлагается разработать систему из двух программ: про-грамма рисования, работающая в графическом режиме с помощью библиотеки wingraph, и запускающее её, а затем управляющее ей консольное приложение. Всё это делается по ана-логии с примерами, рассмотренными в лекционном материале. Варианты заданий уточня-ются ниже. Во всех заданиях движение фигур должно реализовываться отдельными нитями. Рекоме
90 руб.
Гидравлика гидравлические машины и гидроприводы Задача 14 Вариант 4
Z24
: 18 ноября 2025
Из большого закрытого резервуара А, в котором поддерживается постоянный уровень жидкости, а давление на поверхности ее равно р1, по трубопроводу, состоящему из двух параллельно соединенных труб одинаковой длины l1, но разных диаметров d1 и d2 (эквивалентная шероховатость Δэ), жидкость Ж при температуре 50 ºС течет в открытый резервуар Б. Разность уровней жидкости в резервуарах равна Н.
Определить расход Q жидкости, протекающей в резервуар Б. В расчетах принять, что местные потери напора соста
320 руб.