Вычислительная математика. Вариант №7
Состав работы
|
|
|
|
|
|
|
|
|
|
Работа представляет собой rar архив с файлами (распаковать онлайн), которые открываются в программах:
- Microsoft Word
Описание
Задание
Напряжение в электрической цепи описывается дифференциальным уравнением с начальным условием.
Найти аналитически интервал изоляции положительного корня заданного нелинейного уравнения, вычислив производную левой части уравнения и составив таблицу знаков левой части уравнения на всей числовой оси.
Написать программу, которая:
находит k – наименьший положительный корень заданного нелинейного уравнения из найденного в пункте 1 интервала изоляции с точностью 0.001 методом: деления пополам (если Ваша фамилия начинается на гласную букву), хорд (если Ваша фамилия начинается на согласную букву);
решает дифференциальное уравнение методом Рунге-Кутта четвертого порядка с точностью 10-4 на интервале [0;2] (для достижения заданной точности использовать метод двойного пересчета, начальный шаг решения взять равным 1);
с помощью линейной интерполяции по найденному в пункте б) решению дифференциального уравнения находит приближенные значения функции в точках x_i=0,0.1,0.2,...,1.9,2,i=0,1,...,20;
определяет количество теплотыQ=∫_0^2▒〖y^2 dt〗, выделяющегося на единичном сопротивлении за 2 единицы времени, методом: Симпсона (если Ваше имя начинается на гласную букву), трапеций (если Ваше имя начинается на согласную букву) с шагом 0.01.
Программа должна выводить:
найденное приближенное значение k и количество итераций, которое потребовалось для достижения заданной точности;
решение дифференциального уравнения на интервале [0;2] с заданной точностью (выводить следует в 2 столбика: значениеxи соответствующее ему значение y);
результаты линейной интерполяции в точках x_i=0,0.1,0.2,...,1.9,2,i=0,1,...,20 (выводить следует в 2 столбика: значение xiи соответствующее ему значение yi);
количество теплоты Q.
Ответить на вопросы для защиты курсовой работы.
Вариант выбирается по последней цифре зачетной книжки.
Вариант 7
{(y^'=cos( 4x+y)+3(x-y)@y(0)=k),
где k – наименьший положительный корень уравненияx^4-2x^3-2x^2-120=0.
Вопросы для защиты: 3, 6, 10, 13.
Напряжение в электрической цепи описывается дифференциальным уравнением с начальным условием.
Найти аналитически интервал изоляции положительного корня заданного нелинейного уравнения, вычислив производную левой части уравнения и составив таблицу знаков левой части уравнения на всей числовой оси.
Написать программу, которая:
находит k – наименьший положительный корень заданного нелинейного уравнения из найденного в пункте 1 интервала изоляции с точностью 0.001 методом: деления пополам (если Ваша фамилия начинается на гласную букву), хорд (если Ваша фамилия начинается на согласную букву);
решает дифференциальное уравнение методом Рунге-Кутта четвертого порядка с точностью 10-4 на интервале [0;2] (для достижения заданной точности использовать метод двойного пересчета, начальный шаг решения взять равным 1);
с помощью линейной интерполяции по найденному в пункте б) решению дифференциального уравнения находит приближенные значения функции в точках x_i=0,0.1,0.2,...,1.9,2,i=0,1,...,20;
определяет количество теплотыQ=∫_0^2▒〖y^2 dt〗, выделяющегося на единичном сопротивлении за 2 единицы времени, методом: Симпсона (если Ваше имя начинается на гласную букву), трапеций (если Ваше имя начинается на согласную букву) с шагом 0.01.
Программа должна выводить:
найденное приближенное значение k и количество итераций, которое потребовалось для достижения заданной точности;
решение дифференциального уравнения на интервале [0;2] с заданной точностью (выводить следует в 2 столбика: значениеxи соответствующее ему значение y);
результаты линейной интерполяции в точках x_i=0,0.1,0.2,...,1.9,2,i=0,1,...,20 (выводить следует в 2 столбика: значение xiи соответствующее ему значение yi);
количество теплоты Q.
Ответить на вопросы для защиты курсовой работы.
Вариант выбирается по последней цифре зачетной книжки.
Вариант 7
{(y^'=cos( 4x+y)+3(x-y)@y(0)=k),
где k – наименьший положительный корень уравненияx^4-2x^3-2x^2-120=0.
Вопросы для защиты: 3, 6, 10, 13.
Дополнительная информация
Оценка: Отлично
Дата оценки: 24.11.2021
Помогу с вашим вариантом, другой работой, дисциплиной или онлайн-тестом.
E-mail: sneroy20@gmail.com
E-mail: ego178@mail.ru
Дата оценки: 24.11.2021
Помогу с вашим вариантом, другой работой, дисциплиной или онлайн-тестом.
E-mail: sneroy20@gmail.com
E-mail: ego178@mail.ru
Похожие материалы
Вычислительная математика. Вариант №7
arsonix
: 25 декабря 2018
1. Отделите корни уравнения аналитически и уточните один из них методом хорд, выполнив 3 шага метода. Оцените погрешность полученного результата.
2. Составьте таблицу значений функции
250 руб.
Вычислительная математика. Курсовая работа. Вариант 7
Dmitry17
: 18 июня 2022
Вариант 7
Курсовая работа по дисциплине "Вычислительная математика" - Нахождение количества теплоты
!!Важно: перед покупкой проверяйте соответствие заданий на скриншотах у лота с теми, что выдал преподаватель.
Язык реализации программ: Dart.
В архиве:
- исходный код программы с комментариями
- инструкция по запуску
- отчёты
400 руб.
Вычислительная математика. Курсовая работа. Вариант №7
Damovoy
: 24 декабря 2020
Задание на курсовую работу
Напряжение в электрической цепи описывается дифференциальным уравнением с начальным условием.
1. Найти аналитически интервал изоляции положительного корня заданного нелинейного уравнения, вычислив производную левой части уравнения и составив таблицу знаков левой части уравнения на всей числовой оси.
2. Написать программу, которая:
а) находит k – наименьший положительный корень заданного нелинейного уравнения из найденного в пункте 1 интервала изоляции с точностью 0.00
400 руб.
Вычислительная математика. Курсовая работа. Вариант 7
Nikis
: 31 октября 2011
Напряжение в электрической цепи описывается дифференциальным уравнением с начальным условием:
Написать программу, которая определит количество теплоты, выделяющегося на единичном сопротивлении за единицу времени. Количество теплоты определяется по формуле: . Дифференциальное уравнение решить методом Рунге-Кутта четвертого порядка с точностью (для достижения заданной точности использовать метод двойного пересчета). Интеграл вычислить по формуле Симпсона с шагом 0.1. Для нахождения значений фун
150 руб.
Курсовая работа. Вычислительная математика. Вариант №7. ДО СибГУТИ.
Olya
: 9 января 2018
Задание на курсовую работу
Напряжение в электрической цепи описывается дифференциальным уравнением с начальным условием:
Написать программу, которая определит количество теплоты, выделяющегося на единичном сопротивлении за единицу времени. Количество теплоты определяется по формуле: . Дифференциальное уравнение решить методом Рунге-Кутта четвертого порядка с точностью 10-4 (для достижения заданной точности использовать метод двойного пересчета). Интеграл вычислить по формуле Симпсона с шагом
300 руб.
Вычислительная математика. Лабораторная работа №2. Вариант №7
Znich
: 7 апреля 2016
Привести систему к виду, подходящему для метода простой итерации. Рассчитать аналитически количество итераций для решения системы линейных уравнений методом простой итерации с точностью до 0.0001 для каждой переменной.
Написать программу решения системы линейных уравнений методом простой итерации с точностью до 0.0001 для каждой переменной. Точность достигнута, если max┬(i=(l,4) ̅ )〖|x_i^(k+1)-x_i^k |≤0.0001〗 (k – номер итерации, k = 0,1,...). Вывести количество итераций, понадобившееся для дост
90 руб.
Вычислительная математика. Лабораторная работа №1. Вариант №7
Znich
: 7 апреля 2016
Известно, что функция f(x) удовлетворяет условию |f'' (x)|≤2c при любом x. Рассчитать шаг таблицы значений функции f(x), по которой с помощью линейной интерполяции можно было бы найти промежуточные значения функции с точностью 0.0001, если табличные значения функции округлены до 4-х знаков после запятой. Составить программу, которая:
1. Выводит таблицу значений функции с рассчитанным шагом h на интервале
2. С помощью линейной интерполяции вычисляет значения функции в точках
3. Выводит зн
90 руб.
КУРСОВАЯ РАБОТА по дисциплине «Вычислительная математика». Вариант №7.
ДО Сибгути
: 4 февраля 2016
Напряжение в электрической цепи описывается дифференциальным уравнением с начальным условием:
Написать программу, которая определит количество теплоты, выделяющегося на единичном сопротивлении за единицу времени. Количество теплоты определяется по формуле: . Дифференциальное уравнение решить методов Рунге-Кутта четвертого порядка с точностью (для достижения заданной точности использовать метод двойного пересчета). Интеграл вычислить по формуле Симпсона с шагом 0.1. Для нахождения значений фун
100 руб.
Другие работы
ММА/ИДО Иностранный язык в профессиональной сфере (ЛТМ) Тест 20 из 20 баллов 2024 год
mosintacd
: 28 июня 2024
ММА/ИДО Иностранный язык в профессиональной сфере (ЛТМ) Тест 20 из 20 баллов 2024 год
Московская международная академия Институт дистанционного образования Тест оценка ОТЛИЧНО
2024 год
Ответы на 20 вопросов
Результат – 100 баллов
С вопросами вы можете ознакомиться до покупки
ВОПРОСЫ:
1. We have … to an agreement
2. Our senses are … a great role in non-verbal communication
3. Saving time at business communication leads to … results in work
4. Conducting negotiations with foreigners we shoul
150 руб.
Задание №2. Методы управления образовательными учреждениями
studypro
: 13 октября 2016
Практическое задание 2
Задание 1. Опишите по одному примеру использования каждого из методов управления в Вашей профессиональной деятельности.
Задание 2. Приняв на работу нового сотрудника, Вы надеялись на более эффективную работу, но в результате разочарованы, так как он не соответствует одному из важнейших качеств менеджера - самодисциплине. Он не обязателен, не собран, не умеет отказывать и т.д.. Но, тем не менее, он отличный профессионал в своей деятельности. Какими методами управления Вы во
200 руб.
Особенности бюджетного финансирования
Aronitue9
: 24 августа 2012
Содержание:
Введение
Теоретические основы бюджетного финансирования
Понятие и сущность бюджетного финансирования
Характеристика основных форм бюджетного финансирования
Анализ бюджетного финансирования образования
Понятие и источники бюджетного финансирования образования
Проблемы бюджетного финансирования образования
Основные направления совершенствования бюджетного финансирования образования
Заключение
Список использованный литературы
Цель курсовой работы – исследовать особенности бюджетного фин
20 руб.
Программирование (часть 1-я). Зачёт. Билет №2
sibsutisru
: 3 сентября 2021
ЗАЧЕТ по дисциплине “Программирование (часть 1)”
Билет 2
Определить значение переменной y после работы следующего фрагмента программы:
a = 3; b = 2 * a – 10; x = 0; y = 2 * b + a;
if ( b > y ) or ( 2 * b < y + a ) ) then begin x = b – y; y = x + 4 end;
if ( a + b < 0 ) and ( y + x > 2 ) ) then begin x = x + y; y = x – 2 end;
200 руб.