Высшая математика (часть 2-я). Вариант №6
Состав работы
|
|
Работа представляет собой файл, который можно открыть в программе:
- Microsoft Word
Описание
Вариант 6
Задание 1. Кратные интегралы
Однородная пластина имеет форму четырехугольника (см. рисунок). Указаны координаты вершин. С помощью двойного интеграла вычислить координаты центра масс пластины
Задание 2. Дифференциальные уравнения
Найти общее решение дифференциального уравнения.
y^'=2y+e^x-x
Задание 3. Степенные ряды
Найти область сходимости степенного ряда.
∑_(n=1)^∞▒(x-2)^n/(2n)!
Задание 4. Приближенные вычисления с помощью разложения функции в ряд
Вычислить с точностью до 0.001 значение определённого интеграла, разлагая подынтегральную функцию в степенной ряд.
∫_0^0,25▒〖x^3 ln(1+x^2 )dx〗
Задание 5. Линии и области в комплексной плоскости
По заданным условиям, построить область в комплексной плоскости.
{█(&|Rez |≤2@&|z-1|≥1@&-1≤Imz≤2)
Задание 6. Функции комплексного переменного
Вычислить значение функции комплексного переменного, результат представить в алгебраической форме.
√(8&2+2i)
Задание 1. Кратные интегралы
Однородная пластина имеет форму четырехугольника (см. рисунок). Указаны координаты вершин. С помощью двойного интеграла вычислить координаты центра масс пластины
Задание 2. Дифференциальные уравнения
Найти общее решение дифференциального уравнения.
y^'=2y+e^x-x
Задание 3. Степенные ряды
Найти область сходимости степенного ряда.
∑_(n=1)^∞▒(x-2)^n/(2n)!
Задание 4. Приближенные вычисления с помощью разложения функции в ряд
Вычислить с точностью до 0.001 значение определённого интеграла, разлагая подынтегральную функцию в степенной ряд.
∫_0^0,25▒〖x^3 ln(1+x^2 )dx〗
Задание 5. Линии и области в комплексной плоскости
По заданным условиям, построить область в комплексной плоскости.
{█(&|Rez |≤2@&|z-1|≥1@&-1≤Imz≤2)
Задание 6. Функции комплексного переменного
Вычислить значение функции комплексного переменного, результат представить в алгебраической форме.
√(8&2+2i)
Дополнительная информация
Оценка: Зачет
Дата оценки: 30.12.2021
Помогу с вашим вариантом, другой работой, дисциплиной или онлайн-тестом.
E-mail: sneroy20@gmail.com
E-mail: ego178@mail.ru
Дата оценки: 30.12.2021
Помогу с вашим вариантом, другой работой, дисциплиной или онлайн-тестом.
E-mail: sneroy20@gmail.com
E-mail: ego178@mail.ru
Похожие материалы
Высшая математика (часть 2-я), вариант №6
mixalkina94
: 27 декабря 2021
Задание 1. Однородная пластинка имеет форму четырёхугольника (см. рис.). Указаны координаты вершин. С помощью двойного интеграла вычислить координаты центра масс пластины.
Задание 2. Найти общее решение дифференциального уравнения.
y^'=2y+e^x-x
Задание 3. Найти область сходимости степенного ряда.
∑_(n=1)^∞▒(x-2)^n/(2n)!
и т д
250 руб.
Высшая математика (Часть 2). Вариант №6
CrashOv
: 24 февраля 2020
Вариант No6
Задание 1. Однородная пластинка имеет форму четырёхугольника (см. рис.). Указаны координаты вершин. С помощью двойного интеграла вычислить координаты центра масс пластины.
Задание 2. Найти общее решение дифференциального уравнения.
y^'=2y+e^x-x
Задание 3. Найти область сходимости степенного ряда.
∑_(n=1)^∞▒(x-2)^n/(2n)!
Задание 4. Вычислить с точностью до 0,001 значение определённого интеграла, разлагая подынтегральную функцию в степенной ряд.
∫_0^0,25▒〖x^3 ln(1+x^2 ) 〗 dx
350 руб.
Высшая математика (часть 2)
Dirol340
: 11 декабря 2022
1. Однородная пластина имеет форму четырехугольника (см. рисунок). Указаны координаты вершин. С помощью двойного интеграла вычислить координаты центра масс пластины
500 руб.
Высшая математика (часть 2-я).
IT-STUDHELP
: 6 февраля 2022
Онлайн-Тест по дисциплине:
Вопрос №1
Вычислить Ответ при необходимости округлите до тысячных.
0,067
0,315
0.555
0,417
Вопрос №2
Найдите значение выражения
Вопрос №3
Для вычисления значений функции при малых значениях x используется формула ...
Вопрос №4
Найдите с точностью до 0,001.
Вопрос №5
Сколько слагаемых ряда Маклорена для функции достаточно просуммировать для того, чтобы вычислить значение с точностью до 0,001?
1
2
3
4
Вопрос №6
Уравн
700 руб.
Высшая математика (часть 2)
aker
: 10 декабря 2019
Задание 1. Кратные интегралы
Задание к разделу 6,п. 6.5.
Однородная пластина имеет форма четырехугольника(см.рисунок). Указаны координаты вершин. С помощью двойного интеграла вычислить координаты центра масс пластины
Задание 2. Дифференциальные уравнения.
Задание к разделу 7,п. 7.2.
Найти общее решение дифференциального уравнения.
....
Задание 6. Функции комплексного переменного.
Задание к разделу 9, п. 9.2.
Вычислить значение функции комплексного переменного, результат представить в алгебраиче
100 руб.
Вариант 6. контрольная работа Высшая математика (часть 2)
forealkim
: 15 февраля 2023
Задание 1. Кратные интегралы
Однородная пластина имеет форму четырёхугольника (см. рисунок). Указаны координаты вершин. С помощью двойного интеграла вычислить координаты центра масс пластины.
Задание 2. Дифференциальные уравнения
Найти общее решение дифференциального уравнения.
Задание 3. Степенные ряды
Найти область сходимости степенного ряда.
Задание 4. Приближенные вычисления с помощью разложения функции в ряд
Вычислить с точностью до 0,001 значение определённого интеграла, разлагая подынт
400 руб.
Контрольная работа. высшая математика (часть 2). вариант 6.
Ирина36
: 19 сентября 2022
Задание 1. Кратные интегралы
Задание 2. Дифференциальные уравнения
Задание 3. Степенные ряды
Задание 4. Приближенные вычисления с помощью разложения функции в ряд
Задание 5. Линии и области в комплексной плоскости
Задание 6. Функции комплексного переменного
(см фото)
150 руб.
Высшая математика. часть 2-я. Контрольная работа. Вариант №6
Damovoy
: 22 мая 2021
Исходные данные варианта смотри скрин
Задание 1. Однородная пластинка имеет форму четырёхугольника (см. рис.). Указаны координаты вершин. С помощью двойного интеграла вычислить координаты центра масс пластины.
Задание 2. Найти общее решение дифференциального уравнения.
Задание 3. Найти область сходимости степенного ряда.
Задание 4. Вычислить с точностью до 0,001 значение определённого интеграла, разлагая подынтегральную функцию в степенной ряд.
Задание 5. По заданным условиям построить обла
300 руб.
Другие работы
Анализ рентабельности на примере ООО «Русар»
Elfa254
: 7 марта 2013
Тема дипломной работы: Тема: Пути повышения рентабельности на предприятии на примере ООО «Русар» г. Москва Москва 2009 Содержание Введение Глава 1. Теоретические основы повышения рентабельности 1.1 Экономическая сущность понятия рентабельность 1.2 Основные показатели оценки рентабельности 1.3 Проблема повышения рентабельности Глава 2. Анализ рентабельности на примере
ООО «Русар» 2.1 Краткая характеристика предприятия 2.2 Основные направления деятельности предприятия 2.3 Организационная структур
45 руб.
Административные правонарушения в налоговой сфере
alfFRED
: 26 октября 2013
В России в последнее десятилетие получил широкое распространение феномен уклонения от уплаты налогов. При этом действующее законодательное регулирование ответственности за нарушения в сфере налогообложения характеризуется нечеткостью, противоречивостью и пробельностью. По значительному кругу вопросов не достигнуто господствующего мнения и в правоприменительной практике и юридической литературе. В частности, споры вызывает сама система ответственности за нарушения законодательства о налогах и сбо
10 руб.
Абдуллаев А.М. и др. Микроволновые полупроводниковые приборы. Конспект Лекций
GnobYTEL
: 3 января 2012
В данном конспекте лекций обобщен материал по дисциплине "Микроволновые полупроводниковые приборы". Отличительной особенностью конспекта является наличие концептуальных диаграмм, соответствующих содержанию изучаемых тем. Они должны помочь студентам при самостоятельном изучении курса.
Конспект лекций предназначен для бакалавров факультета РРТ по направлению
В 522500, В 523600.
Ответственный редактор: д.ф-м.н., проф. Арипов Х.К.
Рецензент: д.ф-м.н., проф. Баходирханов М.С.
5 руб.