Контрольная работа по дисциплине: Дискретная математика Вариант 6
Состав работы
|
|
Работа представляет собой файл, который можно открыть в программе:
- Microsoft Word
Описание
Вариант 06
No 1. Доказать равенства, используя определения и свойства операций над множествами. Проиллюстрировать при помощи диаграмм Эйлера–Венна.
а) (A∖C)∖(B∖C)=(A∖B)∖C, б) (A∩B)×(C∩D)=(A×C)∩(B×D).
No 2. Даны два конечных множества: A={a,b,c}, B={1,2,3,4}; бинарные отношения P_1⊆A×B, P_2⊆B^2. Изобразить P_1,P_2 графически. Найти P=(P_2∘P_1 )^(–1). Выписать области определения и области значений всех трех отношений: P_1,P_2,P. Построить матрицу [P_2 ], проверить с ее помощью, является ли отношение P_2 рефлексивным,симметричным, антисимметричным, транзитивным.
P_1={(a,1),(a,2),(a,4),(b,1),(b,4),(c,3)};
P_2={(1,1),(2,4),(2,1),(3,3),(4,2),(4,1)}.
No 3. Задано бинарное отношение P⊆R^2; найти его область определения и область значений. Проверить по определению, является ли отношение P рефлексивным, симметричным, антисимметричным, транзитивным.
P={(x,y)∣x+y=-2}.
No 4. Доказать утверждение методом математической индукции:
1/(1⋅2)+1/(2⋅3)+1/(3⋅4)+⋯+1/(n⋅(n+1) )=n/(n+1).
No 5. Бригада из десяти взломщиков одновременно выходит на грабеж трех разных магазинов. Сколькими способами они могут разделиться, если в каждой группе должно быть не менее двух человек? Сколькими способами их после задержания могут рассадить по четырем одинаковым камерам (не менее чем по одному в каждую)?
No 6. Сколько существует положительных трехзначных чисел: а) делящихся на числа 5, 14 или 22? б) делящихся ровно на одно из этих трех чисел?
No 7. Найти коэффициенты при a=x^6⋅y^2⋅z, b=x^3⋅y⋅z^2, c=x^8⋅z^2в разложении (2⋅x^2+3⋅y+5⋅z)^6.
No 8. Найти последовательность {a_n }, удовлетворяющую рекуррентному соотношению 2a_(n+2)+6a_(n+1)+4a_n=0 и начальным условиям a_1=1, a_2=3.
No 9. Орграф задан матрицей смежности. Необходимо:
а) нарисовать граф;
б) выделить компоненты сильной связности;
в) заменить все дуги ребрами и в полученном неориентированном графе найти эйлерову цепь (или цикл).
((1&1&0&0&0&0@1&0&0&0&0&0@0&0&1&1&0&1@0&0&1&0&0&1@1&0&1&0&1&1@0&0&0&1&0&0))
No 10. Взвешенный граф задан матрицей длин дуг. Нарисовать граф. Найти: а) остовное дерево минимального веса; б) кратчайшее расстояние от вершины v_2 до остальных вершин графа, используя алгоритм Дейкстры.
((∞&4&∞&2&3&∞@4&∞&1&1&∞&2@∞&1&∞&5&∞&3@2&1&5&∞&4&∞@3&∞&∞&4&∞&1@∞&2&3&∞&1&∞))
No 1. Доказать равенства, используя определения и свойства операций над множествами. Проиллюстрировать при помощи диаграмм Эйлера–Венна.
а) (A∖C)∖(B∖C)=(A∖B)∖C, б) (A∩B)×(C∩D)=(A×C)∩(B×D).
No 2. Даны два конечных множества: A={a,b,c}, B={1,2,3,4}; бинарные отношения P_1⊆A×B, P_2⊆B^2. Изобразить P_1,P_2 графически. Найти P=(P_2∘P_1 )^(–1). Выписать области определения и области значений всех трех отношений: P_1,P_2,P. Построить матрицу [P_2 ], проверить с ее помощью, является ли отношение P_2 рефлексивным,симметричным, антисимметричным, транзитивным.
P_1={(a,1),(a,2),(a,4),(b,1),(b,4),(c,3)};
P_2={(1,1),(2,4),(2,1),(3,3),(4,2),(4,1)}.
No 3. Задано бинарное отношение P⊆R^2; найти его область определения и область значений. Проверить по определению, является ли отношение P рефлексивным, симметричным, антисимметричным, транзитивным.
P={(x,y)∣x+y=-2}.
No 4. Доказать утверждение методом математической индукции:
1/(1⋅2)+1/(2⋅3)+1/(3⋅4)+⋯+1/(n⋅(n+1) )=n/(n+1).
No 5. Бригада из десяти взломщиков одновременно выходит на грабеж трех разных магазинов. Сколькими способами они могут разделиться, если в каждой группе должно быть не менее двух человек? Сколькими способами их после задержания могут рассадить по четырем одинаковым камерам (не менее чем по одному в каждую)?
No 6. Сколько существует положительных трехзначных чисел: а) делящихся на числа 5, 14 или 22? б) делящихся ровно на одно из этих трех чисел?
No 7. Найти коэффициенты при a=x^6⋅y^2⋅z, b=x^3⋅y⋅z^2, c=x^8⋅z^2в разложении (2⋅x^2+3⋅y+5⋅z)^6.
No 8. Найти последовательность {a_n }, удовлетворяющую рекуррентному соотношению 2a_(n+2)+6a_(n+1)+4a_n=0 и начальным условиям a_1=1, a_2=3.
No 9. Орграф задан матрицей смежности. Необходимо:
а) нарисовать граф;
б) выделить компоненты сильной связности;
в) заменить все дуги ребрами и в полученном неориентированном графе найти эйлерову цепь (или цикл).
((1&1&0&0&0&0@1&0&0&0&0&0@0&0&1&1&0&1@0&0&1&0&0&1@1&0&1&0&1&1@0&0&0&1&0&0))
No 10. Взвешенный граф задан матрицей длин дуг. Нарисовать граф. Найти: а) остовное дерево минимального веса; б) кратчайшее расстояние от вершины v_2 до остальных вершин графа, используя алгоритм Дейкстры.
((∞&4&∞&2&3&∞@4&∞&1&1&∞&2@∞&1&∞&5&∞&3@2&1&5&∞&4&∞@3&∞&∞&4&∞&1@∞&2&3&∞&1&∞))
Дополнительная информация
Комментарии:
Оценка: Отлично
Дата оценки: 04.11.2022
Помогу с вашим вариантом, другой дисциплиной, онлайн-тестом, либо сессией под ключ.
E-mail: sneroy20@gmail.com
E-mail: ego178@mail.ru
Оценка: Отлично
Дата оценки: 04.11.2022
Помогу с вашим вариантом, другой дисциплиной, онлайн-тестом, либо сессией под ключ.
E-mail: sneroy20@gmail.com
E-mail: ego178@mail.ru
Похожие материалы
Контрольная работа по дисциплине: Дискретная математика. Вариант №6
Seraxira
: 10 апреля 2023
(Задания варианта на скриншоте)
No1 Доказать равенства, используя свойства операций над множествами и определения операций. Проиллюстрировать при помощи диаграмм Эйлера-Венна. а) (A\C) \ (B\C) = (A\B)\C б) (AB)(CD)=(AC)(BD).
No2 Даны два конечных множества: А={a,b,c}, B={1,2,3,4}; бинарные отношения P1 AB, P2 B2. Изобразить P1, P2 графически. Найти P = (P2P1)–1. Выписать области определения и области значений всех трех отношений: P1, P2, Р. Построить матрицу [P2], проверить с ее помощью
400 руб.
Контрольная работа по дисциплине: Дискретная математика. Вариант №6
Alexbur1971
: 7 ноября 2020
I. Задано универсальное множество и множества Найти результаты действий a) - д) и каждое действие проиллюстрировать с помощью диаграммы Эйлера-Венна.
250 руб.
Контрольная работа по дисциплине: Дискретная математика. Вариант 6
SibGOODy
: 30 сентября 2018
1. Задано универсальное множество и множества A, B, C, D. Найти результаты действий а) – д) и каждое действие проиллюстрировать с помощью диаграммы Эйлера-Венна.
U={-10,-5,5,10,15}
A={-10,10}, B={-5,5,15}, C={5,10,15}, D={5}.
2. Ввести необходимые элементарные высказывания и записать логической формулой следующее предложение.
"Если студент подготовился к экзамену плохо, то он не решает задачи и не отвечает на вопросы экзаменатора".
3. Для булевой функции f(x,y,z) найти методом преобразовани
500 руб.
Контрольная работа по дисциплине: Дискретная математика. Вариант №6
SibGOODy
: 27 августа 2018
No 1. Доказать равенства, используя определения и свойства операций над множествами. Проиллюстрировать при помощи диаграмм Эйлера–Венна.
а) (A∖C)∖(B∖C)=(A∖B)∖C, б) (A∩B)×(C∩D)=(A×C)∩(B×D).
No 2. Даны два конечных множества: A={a,b,c}, B={1,2,3,4}; бинарные отношения P1⊆A×B, P2⊆B^2. Изобразить P1,P2 графически. Найти P=(P2*P1 )^(–1). Выписать области определения и области значений всех трех отношений: P1,P2,P. Построить матрицу [P2], проверить с ее помощью, является ли отношение P2 рефлексив
1300 руб.
Контрольная работа по дисциплине: Дискретная математика. Вариант №6
shdjrus
: 28 марта 2017
I. Задано универсальное множество и множества Найти результаты действий a) - д) и каждое действие проиллюстрировать с помощью диаграммы Эйлера-Венна.
II. Ввести необходимые элементарные высказывания и записать логической формулой следующее предложени
III. Для булевой функции найти методом преобразования минимальную ДНФ. По таблице истинности построить СКНФ. По минимальной ДНФ построить релейно-контактную схему.
IV. Орграф задан своей матрицей смежности. Следует:
а) нарисовать орграф;
б) найти по
450 руб.
Контрольная работа по дисциплине «Дискретная математика». Вариант №6
Nadyuha
: 9 марта 2017
Задано универсальное множество U и множества A, B, C, D. Найти результаты действий а) – д) и каждое действие проиллюстрировать с помощью диаграммы Эйллера – Венна.
Ввести необходимые элементарные высказывания и записать логической формулой следующее предложение
Для булевой функции f(x,y,z) найти методом преобразования минимальную ДНФ. По таблице истинности построить СКНФ. По минимальной ДНФ построить релейно-контактную схему.
Орграф задан своей матрицей смежности. Следует:
а) нарисовать орграф
б
200 руб.
Контрольная работа по дисциплине: Дискретная математика. Вариант №6
Amor
: 11 января 2014
No1 Доказать равенства, используя свойства операций над множествами и определения операций. Проиллюстрировать при помощи диаграмм Эйлера-Венна. а) (A\C) \ (B\C) = (A\B)\C б) (A B) (C D)=(A C) (B D).
No2 Даны два конечных множества: А={a,b,c}, B={1,2,3,4}; бинарные отношения P1 A B, P2 B2. Изобразить P1, P2 графически. Найти P=(P2P1)–1. Выписать области определения и области значений всех трех отношений: P1, P2, Р. Построить матрицу [P2], проверить с ее помощью, является ли отношение P2
500 руб.
Контрольная работа по дисциплине «Дискретная математика» вариант №6
absd1
: 10 сентября 2011
I. Задано универсальное множество и множества Найти результаты действий a) - д) и каждое действие проиллюстрировать с помощью диаграммы Эйлера-Венна.
II. Ввести необходимые элементарные высказывания и записать логической формулой следующее предложение. “Если студент подготовился к экзамену плохо, то он не решает задачи и не отвечает на вопросы экзаменатора”.
III. Для булевой функции найти методом преобразования минимальную ДНФ. По таблице истинности построить СКНФ. По минимальной ДНФ построи
200 руб.
Другие работы
Контрольная работа №1 по дисциплине "Информатика". 8-й вариант
rt
: 20 января 2015
Системы счисления
1. Умножить в двоичной арифметике числа a и b. a = 101,01(2); b = 11,1(2)
2. Перевести число a из десятичной в систему счисления по основанию 4,
a = 6,9375
3. Перевести число a из двоичной в десятичную систему счисления.
a = 1100,10(01)
4. Перевести число а из 8-меричной в 16-тиричную систему счисления.
a = 706,53
Представление информации в компьютере
5. Даны десятичные коды символов из таблицы ASCII (для удобочитаемости коды символов разделены дефисом). КОД: 77-79-85-83-69
6
60 руб.
Экономическая география Южного федерального округа
alfFRED
: 24 сентября 2013
Введение
Актуальность выбранной тематики исследования обусловлена тем фактом, что защита экологии представляет собой сложную, многостороннюю задачу, решение которой потребует мобилизации всех сил человечества и предполагает целый ряд этапов. В связи с этим целью данной работы является: полное раскрытие данного вопроса.
Для реализации цели в работе необходимо решить следующие задачи:
1) осветить вопросы;
2) рассмотреть;
3) изучить;
Цель и задачи работы обусловили выбор ее структуры. Работа
10 руб.
Древнегреческий философ Эмпедокл
Qiwir
: 2 сентября 2013
Древнегреческий философ Эмпедокл не имеет подобий среди своих современников – настолько он своеобразен, личностно индивидуален. Он жил в классические времена Греции, но его образ до такой степени неклассичен, что ему можно отыскать аналогии лишь в поздней, умиравшей античности. Иногда в нем видят черты, вообще не свойственные эллину.
Для Эмпедокла, как и для первых философов, характерно сочетание глубины умозрения, широкой и точной наблюдательности с практическими тенденциями – со стремлением
5 руб.
Экономическая целесообразность разработки для приемо-сдаточных испытаний арматуры высокого давления
Den45
: 15 декабря 2015
В данном курсовом проекте раскрыта экономическая целесообразность разработки для приемо-сдаточных испытаний арматуры высокого давления. Для этого используется функционально-стоимостной анализ базовой модели стенда. С использованием корректирующей формы функционально-стоимостного анализа производится анализ базового варианта технической системы, подвергающийся инновационным преобразованиям. В результате в базовом варианте обнаруживаются функциональные и структурные элементы системы, обладающие эк
100 руб.