Экзамен по дисциплине: Теория сложностей вычислительных процессов и структур. Билет №4

Состав работы

material.view.file_icon 8825E73F-7887-48D6-B48C-AAA646694BC0.docx
Работа представляет собой файл, который можно открыть в программе:
  • Microsoft Word

Описание

Билет №4


1.Имеется склад, на котором присутствует некоторый ассортимент товаров. Запас каждого товара неограничен. У каждого товара своя стоимость сi и масса mi. Методом динамического программирования сформировать такой набор товаров с максимальной стоимостью, чтобы его суммарная масса не превышала заданную грузоподъемность М.
Номер товара, i mi сi M
1 7 21 25
2 3 8 
3 8 18 52


2. По алгоритму Краскала найти остов минимального веса для связного взвешенного неориентированного графа, имеющего 6 вершин. Граф задан матрицей смежности, (0 означает, что соответствующей дуги нет).

=============================================

Дополнительная информация

Проверил(а): Галкина Марина Юрьевна
Оценка: Отлично
Дата оценки: 20.04.2023г.

Помогу с вашим вариантом, другой работой, дисциплиной или онлайн-тестом.
E-mail: sneroy20@gmail.com
E-mail: ego178@mail.ru
Экзамен по дисциплине: Теория сложности вычислительных процессов и структур
1. По алгоритму Дейкстры найти кратчайшее расстояние от вершины 0 до всех остальных вершин связного взвешенного неориентированного графа, имеющего 5 вершин (нумерация вершин начинается с 0). Граф задан матрицей весов дуг, соединяющих всевозможные пары вершин. 2. Оптимальным образом расставить скобки при перемножении матриц М1[3x5], M2[5x2], M3[2x9], М4[9x3], M5[3x6]
User aikys : 18 июня 2016
60 руб.
Теория сложностей вычислительных процессов и структур. Экзамен. Билет №4.
Билет №4 1. Имеется склад, на котором присутствует некоторый ассортимент товаров. Запас каждого товара неограничен. У каждого товара своя стоимость сi и масса mi. Методом динамического программирования сформировать такой набор товаров с максимальной стоимостью, чтобы его суммарная масса не превышала заданную грузоподъемность М. Номер товара, i mi сi M 1 7 21 25 2 3 8 3 8 18 52 2. По алгоритму Краскала найти остов минимального веса для связного взвешенного неориентированного графа, имеющего 6
User nik200511 : 27 мая 2019
348 руб.
Теория сложностей вычислительных процессов и структур. Экзамен. Билет №4.
Теория сложностей вычислительных процессов и структур. Экзамен. Билет №4.
Билет №4 (Все задачи решаются «вручную») 1. По алгоритму Краскала найти остов минимального веса для связного взвешенного неориентированного графа, имеющего 5 вершин. Граф задан матрицей весов дуг, соединяющих всевозможные пары вершин 2. Имеется склад, на котором присутствует некоторый ассортимент товаров. Запас каждого товара неограничен. У каждого товара своя стоимость Ci и масса mi. Методом динамического программирования сформировать такой набор товаров, чтобы его суммарная масса не превыша
User zhekaersh : 6 марта 2015
40 руб.
Теория сложностей вычислительных процессов и структур. Экзамен. Билет №4.
Теория сложностей вычислительных процессов и структур. Экзамен. Билет №4
1.По алгоритму Краскала найти остов минимального веса для связного взвешенного неориентированного графа, имеющего 5 вершин. Граф задан матрицей весов дуг, соединяющих всевозможные пары вершин 0 0 1 0 5 0 0 10 6 7 1 10 0 12 4 0 6 12 0 3 5 7 4 3 0 2. Имеется склад, на котором присутствует некоторый ассортимент товаров. Запас каждого товара неограничен. У каждого товара своя стоимость Ci и масса mi. Методом динамического программирования сформировать такой набор товаров, чтобы его суммарная масс
User sun525 : 10 ноября 2014
30 руб.
Теория сложностей вычислительных процессов и структур. Экзамен. Билет № 4
Билет №4 (Все задачи решаются «вручную») 1. По алгоритму Краскала найти остов минимального веса для связного взвешенного неориентированного графа, имеющего 5 вершин. Граф задан матрицей весов дуг, соединяющих всевозможные пары вершин 2. Имеется склад, на котором присутствует некоторый ассортимент товаров. Запас каждого товара неограничен. У каждого товара своя стоимость Ci и масса mi. Методом динамического программирования сформировать такой набор товаров, чтобы его суммарная масса не превыша
User nik200511 : 7 июля 2014
46 руб.
Теория сложностей вычислительных процессов и структур. Экзамен. Билет № 4
Теория сложности вычислительных процессов и структур. Экзаменационная работа. Билет 4.
Билет №4 (Все задачи решаются «вручную») 1. По алгоритму Краскала найти остов минимального веса для связного взвешенного неориентированного графа, имеющего 5 вершин. Граф задан матрицей весов дуг, соединяющих всевозможные пары вершин 2. Имеется склад, на котором присутствует некоторый ассортимент товаров. Запас каждого товара неограничен. У каждого товара своя стоимость Ci и масса mi. Методом динамического программирования сформировать такой набор товаров, чтобы его суммарная масса не превыша
User Bodibilder : 29 мая 2019
30 руб.
Теория сложностей вычислительных процессов и структур
Задача 1. Лестница У лестницы n ступенек, пронумерованных числами 1, 2,.. , n снизу вверх. На каждой ступеньке написано число. Начиная с подножия лестницы (его можно считать ступенькой с номером 0), требуется взобраться на самый верх (ступеньку с номером n). За один шаг можно подниматься на одну или на две ступеньки. После подъёма числа, записанные на посещённых ступеньках, складываются. Нужно подняться по лестнице так, чтобы сумма этих чисел была как можно больше. Задача 2. Ход конём Дана прям
User NikolaSuprem : 9 февраля 2021
300 руб.
Экзамен по дисциплине: Теория сложностей вычислительных процессов и структур. Билет №2
илет №2 1. С помощью алгоритма Форда-Беллмана найти кратчайшие расстояния от вершины 2 (нумерация вершин начинается с 0) до всех остальных вершин связного взвешенного неориентированного графа, имеющего 6 вершин. Граф задан матрицей смежности, (0 означает, что соответствующей дуги нет). 0 5 0 1 7 1 5 0 2 3 2 4 0 2 0 5 3 1 1 3 5 0 4 5 7 2 3 4 0 3 1 4 1 5 3 0 2. Имеется склад, на котором присутствует некоторый ассортимент товаров. Запас каждого товара неограничен. У каждого товара своя стоимость
User holm4enko87 : 15 мая 2025
270 руб.
promo
Авторское свидетельство № 1087651 Установка для очистки бурового раствора, Авторское свидетельство № 1488433 А1 Устройство для управления процессом очистки, Авторское свидетельство № 1490249 Система очистки бурового раствора Цыганкова В.В., Авторское свид
Авторское свидетельство № 1087651 Установка для очистки бурового раствора, Авторское свидетельство № 1488433 А1 Устройство для управления процессом очистки, Авторское свидетельство № 1490249 Система очистки бурового раствора Цыганкова В.В., Авторское свидетельство № 2030545 С1 Система очистки бурового раствора-(Формат Компас-CDW, Autocad-DWG, Adobe-PDF, Picture-Jpeg)-Чертеж-Нефтегазопромысловое оборудование-Патент-Патентно-информационный обзор-Курсовая работа-Дипломная работа
596 руб.
Авторское свидетельство № 1087651 Установка для очистки бурового раствора, Авторское свидетельство № 1488433 А1 Устройство для управления процессом очистки, Авторское свидетельство № 1490249 Система очистки бурового раствора Цыганкова В.В., Авторское свид
Теплотехника РГАУ-МСХА 2018 Задача 6 Вариант 43
Горизонтальная труба длиной L, м и наружным диаметром d, м расположена в помещении, температура воздуха в котором tв, °С. Средняя температура поверхности трубы tс, °С. Определите величину коэффициента теплоотдачи от трубы к воздуху, а также тепловой поток, теряемый трубой. Ответить на вопросы к задаче №5. 1. Дайте определение свободной конвекции. 2. Что такое определяющие и определяемые числа подобия, уравнение подобия? 3. Каков физический смысл коэффициента теплоотдачи, от чего он зав
User Z24 : 27 января 2026
200 руб.
Теплотехника РГАУ-МСХА 2018 Задача 6 Вариант 43
Методика проведения измерений индикаторами часового типа
Пункт выполнения работы: получить практические навыки при контроле отклонений формы и расположения поверхностей; ознакомиться с назначением и методикой измерений при помощи индикаторов часового типа.
User evelin : 25 февраля 2013
15 руб.
Контрольная работа по дисциплине: Теория вероятностей и математическая статистика. Вариант №4
10.4. Из трёх орудий произвели залп по цели. Вероятность попадания в цель при одном выстреле из первого орудия равна 0,8; для второго и третьего орудий эти вероятности соответственно равны 0,6 и 0,9. Найти вероятность того, что: а) только один снаряд попадёт в цель; б) только два снаряда попадут в цель; в) все три снаряда попадут в цель. 11.4. Среднее число заявок, поступающих на предприятие бытового обслуживания за 1 ч, равно четырём. Найти вероятность того, что за 3 ч поступит: а) 6 заявок; б
User Елена22 : 5 мая 2016
150 руб.
up Наверх