Экзамен по дисциплине: Теория сложностей вычислительных процессов и структур. Билет №4
Состав работы
|
|
Работа представляет собой файл, который можно открыть в программе:
- Microsoft Word
Описание
Билет №4
1.Имеется склад, на котором присутствует некоторый ассортимент товаров. Запас каждого товара неограничен. У каждого товара своя стоимость сi и масса mi. Методом динамического программирования сформировать такой набор товаров с максимальной стоимостью, чтобы его суммарная масса не превышала заданную грузоподъемность М.
Номер товара, i mi сi M
1 7 21 25
2 3 8
3 8 18 52
2. По алгоритму Краскала найти остов минимального веса для связного взвешенного неориентированного графа, имеющего 6 вершин. Граф задан матрицей смежности, (0 означает, что соответствующей дуги нет).
=============================================
1.Имеется склад, на котором присутствует некоторый ассортимент товаров. Запас каждого товара неограничен. У каждого товара своя стоимость сi и масса mi. Методом динамического программирования сформировать такой набор товаров с максимальной стоимостью, чтобы его суммарная масса не превышала заданную грузоподъемность М.
Номер товара, i mi сi M
1 7 21 25
2 3 8
3 8 18 52
2. По алгоритму Краскала найти остов минимального веса для связного взвешенного неориентированного графа, имеющего 6 вершин. Граф задан матрицей смежности, (0 означает, что соответствующей дуги нет).
=============================================
Дополнительная информация
Проверил(а): Галкина Марина Юрьевна
Оценка: Отлично
Дата оценки: 20.04.2023г.
Помогу с вашим вариантом, другой работой, дисциплиной или онлайн-тестом.
E-mail: sneroy20@gmail.com
E-mail: ego178@mail.ru
Оценка: Отлично
Дата оценки: 20.04.2023г.
Помогу с вашим вариантом, другой работой, дисциплиной или онлайн-тестом.
E-mail: sneroy20@gmail.com
E-mail: ego178@mail.ru
Похожие материалы
Экзамен по дисциплине: Теория сложности вычислительных процессов и структур
aikys
: 18 июня 2016
1. По алгоритму Дейкстры найти кратчайшее расстояние от вершины 0 до всех остальных вершин связного взвешенного неориентированного графа, имеющего 5 вершин (нумерация вершин начинается с 0). Граф задан матрицей весов дуг, соединяющих всевозможные пары вершин.
2. Оптимальным образом расставить скобки при перемножении матриц
М1[3x5], M2[5x2], M3[2x9], М4[9x3], M5[3x6]
60 руб.
Теория сложностей вычислительных процессов и структур. Экзамен. Билет №4.
nik200511
: 27 мая 2019
Билет №4
1. Имеется склад, на котором присутствует некоторый ассортимент товаров. Запас каждого товара неограничен. У каждого товара своя стоимость сi и масса mi. Методом динамического программирования сформировать такой набор товаров с максимальной стоимостью, чтобы его суммарная масса не превышала заданную грузоподъемность М.
Номер товара, i mi сi M
1 7 21 25
2 3 8
3 8 18 52
2. По алгоритму Краскала найти остов минимального веса для связного взвешенного неориентированного графа, имеющего 6
348 руб.
Теория сложностей вычислительных процессов и структур. Экзамен. Билет №4.
zhekaersh
: 6 марта 2015
Билет №4
(Все задачи решаются «вручную»)
1. По алгоритму Краскала найти остов минимального веса для связного взвешенного неориентированного графа, имеющего 5 вершин. Граф задан матрицей весов дуг, соединяющих всевозможные пары вершин
2. Имеется склад, на котором присутствует некоторый ассортимент товаров. Запас каждого товара неограничен. У каждого товара своя стоимость Ci и масса mi. Методом динамического программирования сформировать такой набор товаров, чтобы его суммарная масса не превыша
40 руб.
Теория сложностей вычислительных процессов и структур. Экзамен. Билет №4
sun525
: 10 ноября 2014
1.По алгоритму Краскала найти остов минимального веса для связного взвешенного неориентированного графа, имеющего 5 вершин. Граф задан матрицей весов дуг, соединяющих всевозможные пары вершин
0 0 1 0 5
0 0 10 6 7
1 10 0 12 4
0 6 12 0 3
5 7 4 3 0
2. Имеется склад, на котором присутствует некоторый ассортимент товаров. Запас каждого товара неограничен. У каждого товара своя стоимость Ci и масса mi. Методом динамического программирования сформировать такой набор товаров, чтобы его суммарная масс
30 руб.
Теория сложностей вычислительных процессов и структур. Экзамен. Билет № 4
nik200511
: 7 июля 2014
Билет №4
(Все задачи решаются «вручную»)
1. По алгоритму Краскала найти остов минимального веса для связного взвешенного неориентированного графа, имеющего 5 вершин. Граф задан матрицей весов дуг, соединяющих всевозможные пары вершин
2. Имеется склад, на котором присутствует некоторый ассортимент товаров. Запас каждого товара неограничен. У каждого товара своя стоимость Ci и масса mi. Методом динамического программирования сформировать такой набор товаров, чтобы его суммарная масса не превыша
46 руб.
Теория сложности вычислительных процессов и структур. Экзаменационная работа. Билет 4.
Bodibilder
: 29 мая 2019
Билет №4
(Все задачи решаются «вручную»)
1. По алгоритму Краскала найти остов минимального веса для связного взвешенного неориентированного графа, имеющего 5 вершин. Граф задан матрицей весов дуг, соединяющих всевозможные пары вершин
2. Имеется склад, на котором присутствует некоторый ассортимент товаров. Запас каждого товара неограничен. У каждого товара своя стоимость Ci и масса mi. Методом динамического программирования сформировать такой набор товаров, чтобы его суммарная масса не превыша
30 руб.
Теория сложностей вычислительных процессов и структур
NikolaSuprem
: 9 февраля 2021
Задача 1. Лестница
У лестницы n ступенек, пронумерованных числами 1, 2,.. , n снизу вверх. На каждой ступеньке написано число. Начиная с подножия лестницы (его можно считать ступенькой с номером 0), требуется взобраться на самый верх (ступеньку с номером n). За один шаг можно подниматься на одну или на две ступеньки. После подъёма числа, записанные на посещённых ступеньках, складываются. Нужно подняться по лестнице так, чтобы сумма этих чисел была как можно больше.
Задача 2. Ход конём
Дана прям
300 руб.
Экзамен по дисциплине: Теория сложностей вычислительных процессов и структур. Билет №2
holm4enko87
: 15 мая 2025
илет №2
1. С помощью алгоритма Форда-Беллмана найти кратчайшие расстояния от вершины 2 (нумерация вершин начинается с 0) до всех остальных вершин связного взвешенного неориентированного графа, имеющего 6 вершин. Граф задан матрицей смежности, (0 означает, что соответствующей дуги нет).
0 5 0 1 7 1
5 0 2 3 2 4
0 2 0 5 3 1
1 3 5 0 4 5
7 2 3 4 0 3
1 4 1 5 3 0
2. Имеется склад, на котором присутствует некоторый ассортимент товаров. Запас каждого товара неограничен. У каждого товара своя стоимость
270 руб.
Другие работы
Авторское свидетельство № 1087651 Установка для очистки бурового раствора, Авторское свидетельство № 1488433 А1 Устройство для управления процессом очистки, Авторское свидетельство № 1490249 Система очистки бурового раствора Цыганкова В.В., Авторское свид
https://vk.com/aleksey.nakonechnyy27
: 29 мая 2016
Авторское свидетельство № 1087651 Установка для очистки бурового раствора, Авторское свидетельство № 1488433 А1 Устройство для управления процессом очистки, Авторское свидетельство № 1490249 Система очистки бурового раствора Цыганкова В.В., Авторское свидетельство № 2030545 С1 Система очистки бурового раствора-(Формат Компас-CDW, Autocad-DWG, Adobe-PDF, Picture-Jpeg)-Чертеж-Нефтегазопромысловое оборудование-Патент-Патентно-информационный обзор-Курсовая работа-Дипломная работа
596 руб.
Теплотехника РГАУ-МСХА 2018 Задача 6 Вариант 43
Z24
: 27 января 2026
Горизонтальная труба длиной L, м и наружным диаметром d, м расположена в помещении, температура воздуха в котором tв, °С. Средняя температура поверхности трубы tс, °С. Определите величину коэффициента теплоотдачи от трубы к воздуху, а также тепловой поток, теряемый трубой.
Ответить на вопросы к задаче №5.
1. Дайте определение свободной конвекции.
2. Что такое определяющие и определяемые числа подобия, уравнение подобия?
3. Каков физический смысл коэффициента теплоотдачи, от чего он зав
200 руб.
Методика проведения измерений индикаторами часового типа
evelin
: 25 февраля 2013
Пункт выполнения работы: получить практические навыки при контроле отклонений формы и расположения поверхностей; ознакомиться с назначением и методикой измерений при помощи индикаторов часового типа.
15 руб.
Контрольная работа по дисциплине: Теория вероятностей и математическая статистика. Вариант №4
Елена22
: 5 мая 2016
10.4. Из трёх орудий произвели залп по цели. Вероятность попадания в цель при одном выстреле из первого орудия равна 0,8; для второго и третьего орудий эти вероятности соответственно равны 0,6 и 0,9. Найти вероятность того, что: а) только один снаряд попадёт в цель; б) только два снаряда попадут в цель; в) все три снаряда попадут в цель.
11.4. Среднее число заявок, поступающих на предприятие бытового обслуживания за 1 ч, равно четырём. Найти вероятность того, что за 3 ч поступит: а) 6 заявок; б
150 руб.