Контрольная работа по дисциплине: Дискретная математика. Вариант 13
Состав работы
|
|
Работа представляет собой файл, который можно открыть в программе:
- Microsoft Word
Описание
Вариант 13
Задание 1. Доказать равенства, используя определения и свойства операций над множествами. Проиллюстрировать при помощи диаграмм Эйлера–Венна.
Задание 2. Даны два конечных множества: A={a,b,c}, B={1,2,3,4}; бинарные отношения P1 AxB, P2 B^(2). Изобразить P1, P2 графически. Найти P=(P2*P1 )^(–1). Выписать области определения и области значений всех трех отношений: P1, P2, P. Построить матрицу [P2], проверить с ее помощью, является ли отношение P2 рефлексивным, симметричным, антисимметричным, транзитивным.
Задание 3. Задано бинарное отношение P Z^(2); найти его область определения и область значений. Проверить по определению, является ли отношение P рефлексивным, симметричным, антисимметричным, транзитивным.
Задание 4. Доказать утверждение методом математической индукции: число 4^(n)+15n-1 кратно 9 для всех натуральных n.
Задание 5. Двенадцать студентов должны сдавать зачет по трем предметам: физике, английскому языку и истории. Все зачеты назначены на одно время и каждый может сдавать только один зачет, поэтому студентам нужно распределиться на группы, не менее чем по трое. Сколькими способами это можно сделать? Сколькими способами они могут разместиться после зачета за четырьмя совершенно одинаковыми столиками (не менее чем по двое) для того, чтобы отпраздновать результаты?
Задание 6. Сколько существует положительных трехзначных чисел: а) делящихся ни на одно из чисел 8, 11, 14? б) делящихся ровно на одно из этих трех чисел?
Задание 7. Найти коэффициенты при a=x^(2)*y^(4)*z^(2), b=x*y^(3)*z^(2), c=y^(4)*z^(4) в разложении (x+4*y^(2)+5*z)^(6).
Задание 8. Найти последовательность {an}, удовлетворяющую рекуррентному соотношению 2a_(n+2)+7a_(n+1)+6a_n=0 и начальным условиям a1=0, a2=15.
Задание 9. Орграф задан матрицей смежности. Необходимо:
а) нарисовать граф;
б) выделить компоненты сильной связности;
в) заменить все дуги ребрами и в полученном неориентированном графе найти эйлерову цепь (или цикл).
(1 0 0 0 0 1)
(1 1 1 0 1 0)
(0 0 1 1 1 0)
(0 0 1 0 1 0)
(0 0 0 1 0 0)
(1 0 0 0 0 0)
Задание 10. Взвешенный граф задан матрицей длин дуг. Нарисовать граф. Найти: а) остовное дерево минимального веса; б) кратчайшее расстояние от вершины v5 до остальных вершин графа, используя алгоритм Дейкстры.
Задание 1. Доказать равенства, используя определения и свойства операций над множествами. Проиллюстрировать при помощи диаграмм Эйлера–Венна.
Задание 2. Даны два конечных множества: A={a,b,c}, B={1,2,3,4}; бинарные отношения P1 AxB, P2 B^(2). Изобразить P1, P2 графически. Найти P=(P2*P1 )^(–1). Выписать области определения и области значений всех трех отношений: P1, P2, P. Построить матрицу [P2], проверить с ее помощью, является ли отношение P2 рефлексивным, симметричным, антисимметричным, транзитивным.
Задание 3. Задано бинарное отношение P Z^(2); найти его область определения и область значений. Проверить по определению, является ли отношение P рефлексивным, симметричным, антисимметричным, транзитивным.
Задание 4. Доказать утверждение методом математической индукции: число 4^(n)+15n-1 кратно 9 для всех натуральных n.
Задание 5. Двенадцать студентов должны сдавать зачет по трем предметам: физике, английскому языку и истории. Все зачеты назначены на одно время и каждый может сдавать только один зачет, поэтому студентам нужно распределиться на группы, не менее чем по трое. Сколькими способами это можно сделать? Сколькими способами они могут разместиться после зачета за четырьмя совершенно одинаковыми столиками (не менее чем по двое) для того, чтобы отпраздновать результаты?
Задание 6. Сколько существует положительных трехзначных чисел: а) делящихся ни на одно из чисел 8, 11, 14? б) делящихся ровно на одно из этих трех чисел?
Задание 7. Найти коэффициенты при a=x^(2)*y^(4)*z^(2), b=x*y^(3)*z^(2), c=y^(4)*z^(4) в разложении (x+4*y^(2)+5*z)^(6).
Задание 8. Найти последовательность {an}, удовлетворяющую рекуррентному соотношению 2a_(n+2)+7a_(n+1)+6a_n=0 и начальным условиям a1=0, a2=15.
Задание 9. Орграф задан матрицей смежности. Необходимо:
а) нарисовать граф;
б) выделить компоненты сильной связности;
в) заменить все дуги ребрами и в полученном неориентированном графе найти эйлерову цепь (или цикл).
(1 0 0 0 0 1)
(1 1 1 0 1 0)
(0 0 1 1 1 0)
(0 0 1 0 1 0)
(0 0 0 1 0 0)
(1 0 0 0 0 0)
Задание 10. Взвешенный граф задан матрицей длин дуг. Нарисовать граф. Найти: а) остовное дерево минимального веса; б) кратчайшее расстояние от вершины v5 до остальных вершин графа, используя алгоритм Дейкстры.
Дополнительная информация
Зачет без замечаний!
Год сдачи: 2021 г.
Преподаватель: Бах О.А.
Помогу с другим вариантом.
Выполняю работы на заказ по различным дисциплинам.
E-mail: LRV967@ya.ru
Год сдачи: 2021 г.
Преподаватель: Бах О.А.
Помогу с другим вариантом.
Выполняю работы на заказ по различным дисциплинам.
E-mail: LRV967@ya.ru
Похожие материалы
Контрольная работа по дисциплине "Дискретная математика". Вариант №13
alex89rus
: 1 апреля 2017
I. Задано универсальное множество и множества Найти результаты действий a) - д) и каждое действие проиллюстрировать с помощью диаграммы Эйлера-Венна.
II. Ввести необходимые элементарные высказывания и записать логической формулой следующее предложение.
III. Для булевой функции найти методом преобразования минимальную ДНФ. По таблице истинности построить СКНФ. По минимальной ДНФ построить релейно-контактную схему.
IV. Орграф задан своей матрицей смежности. Следует:
а) нарисовать орграф;
б) найт
150 руб.
Контрольная работа по дисциплине: "Дискретная математика". Вариант № 13
ДО Сибгути
: 27 января 2013
I. Задано универсальное множество и множества Найти результаты действий a) - д) и каждое действие проиллюстрировать с помощью диаграммы Эйлера-Венна.
II. Ввести необходимые элементарные высказывания и записать логической формулой следующее предложение.
III. Для булевой функции найти методом преобразования минимальную ДНФ. По таблице истинности построить СКНФ. По минимальной ДНФ построить релейно-контактную схему.
IV. Орграф задан своей матрицей смежности. Следует:
а) нарисовать орграф;
б) н
90 руб.
Контрольная работа по дисциплине: Дискретная математика
Максим400
: 4 февраля 2021
Контрольная работа
по дисциплине: Дискретная математика
Вариант 3
I. Задано универсальное множество U и множества A,B,C,D. Найти результаты действий а) – д) и каждое действие проиллюстрировать с помощью диаграммы Эйлера-Вейна.
II. Ввести необходимые элементарные высказывания и записать логической формулой следующие предложение.
«Если на небе светит солнце, и не идет дождь, то погода подходит для пикника»
III. Для булевой функции f (x,y,z) найти методом преобразования минимальную ДНФ. По таблиц
100 руб.
Контрольная работа по дисциплине: «Дискретная математика»
Мария114
: 24 мая 2017
1. Задано универсальное множество и множества Найти результаты действий a) - д) и каждое действие проиллюстрировать с помощью диаграммы Эйлера-Венна.
2. Ввести необходимые элементарные высказывания и записать логической формулой следующее предложение.
3. Для булевой функции найти методом преобразования минимальную ДНФ. По таблице истинности построить СКНФ. По минимальной ДНФ построить релейно-контактную схему.
4. Орграф задан своей матрицей смежности. Следует:
а) нарисовать орграф;
б) найти
100 руб.
Контрольная работа по дисциплине: "Дискретная математика"
Ivanych
: 19 марта 2017
Вариант №3
Задача №1
Задано универсальное множество U и множества A, B, C, D. Найти результаты действий а) -д) и каждое действие проиллюстрировать с помощью диаграмм Эйлера-Венна
Задача №2
Ввести необходимые элементарные высказывания и записать логической формулой следующее предложение: «Если на небе светит солнце, и не идет дождь, то погода подходит для пикника».
200 руб.
Контрольная работа по дисциплине: Дискретная математика
BuKToP89
: 31 марта 2016
Вариант: 2
I. Задано универсальное множество U и множества A, B, C, D. Найти результаты действий a) - д) и каждое действие проиллюстрировать с помощью диаграммы Эйлера-Венна.
II. Ввести необходимые элементарные высказывания и записать логической формулой следующее предложение.
“Если вопрос на экзамене сформулирован корректно, а студент не знает ответа, то экзаменатор недоволен”.
III. Для булевой функции найти методом преобразования минимальную ДНФ. По таблице истинности построить СКНФ. По миним
80 руб.
Контрольная работа по дисциплине: Дискретная математика
pvv1962
: 4 апреля 2015
I. Задано универсальное множество U и множества A,B,C,D. Найти результаты действий а) – д) и каждое действие проиллюстрировать с помощью диаграммы Эйлера-Вейна.
II. Ввести необходимые элементарные высказывания и записать логической формулой следующие предложение.
“Если на небе светит солнце, и не идет дождь, то погода подходит для пикника”
III. Для булевой функции f(x,y,z) найти методом преобразования минимальную
ДНФ. По таблице истинности построить СКНФ. По минимальной ДНФ
75 руб.
Контрольная работа по дисциплине: " Дискретная математика"
marvredina
: 9 ноября 2014
I. Задано универсальное множество и множества Найти результаты действий a) - д) и каждое действие проиллюстрировать с помощью диаграммы Эйлера-Венна.
II. Ввести необходимые элементарные высказывания и записать логической формулой следующее предложение.
III. Для булевой функции найти методом преобразования минимальную ДНФ. По таблице истинности построить СКНФ. По минимальной ДНФ построить релейно-контактную схему.
IV. Орграф задан своей матрицей смежности. Следует:
а) нарисовать орграф;
б) н
50 руб.
Другие работы
Розрахунок та дослідження цифрового рекурсивного цифрового фільтра на основі аналогового фільтра-прототипу
GnobYTEL
: 23 января 2012
ЗМІСТ
Вступ.
Вхідні дані.
Розрахунок та дослідження аналогового фільтра.
Визначення порядку аналогового фільтра та його частоти зрізу.
Розрахунок фільтра-прототипу.
Частотне перетворення фільтра-прототипу у відповідний фільтр заданий за варіантом.
Дослідження та моделювання отриманого фільтра.
Формування тестового сигналу.
Виведення на екран вхідного та вихідного сигналів.
Побудова спектрів вхідного та вихідного сигналів.
Розрахунок та дослідження рекурсивного цифрового фільтра.
Визначення поряд
10 руб.
Устройство подвески-3 электро-центробежного насоса УЭЦН-5-125 Капиллярной системы подачи ингибитора солеотложении в зону перфорации: Плашка, Втулка нижняя, Корпус-Деталировка-Сборочный чертеж-Чертежи-Графическая часть-Оборудование для добычи и подготовки
nakonechnyy_lelya@mail.ru
: 1 февраля 2017
Устройство подвески-3 электро-центробежного насоса УЭЦН-5-125 Капиллярной системы подачи ингибитора солеотложении в зону перфорации: Плашка, Втулка нижняя, Корпус-Деталировка-Сборочный чертеж-Чертежи-(Формат Компас-CDW, Autocad-DWG, Adobe-PDF, Picture-Jpeg)-Чертеж-Оборудование для добычи и подготовки нефти и газа-Курсовая работа-Дипломная работа
460 руб.
Курсовой по деталям машин. Программы для расчётов курсового проекта. Задание № 1.
kyxlik2
: 5 октября 2012
Программа для расчётов курсового проекта по деталям машин на базе EXCEL и AutoCAD.
Для проведения расчета имеется подробная инструкция по расчету и вводу данных.
Методика пользования программами предусматривает поэтапное проведение расчетов"шаг за шагом", при этом на каждом "Листе" необходимо задавать исходные данные, полученные в предыдущих расчетах.
Содержание программ для расчета и последовательность выполнения расчетов
1. Инст
80 руб.
Как отразить в бухучете кражу на предприятии
alfFRED
: 8 ноября 2013
В ходе деятельности предприятия нередко происходит хищение товаров. Особенно часто эта неприятность случается в торговых организациях. Вот и приходится «ломать голову» бухгалтерам над вытекающими многочисленными вопросами. Например, как правильно отразить «последствия краж» в бухгалтерском учете? Нужно ли восстанавливать НДС? О том как решать эти и другие вопросы и пойдет речь.
На торговых предприятиях, особенно в которых товар находится в свободном доступе, факт краж неизбежный. Как правило по
10 руб.