Контрольная и Лабораторные работы 1-3 по дисциплине: Интеллектуальные технологии информационной безопасности. Вариант №19
Состав работы
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Работа представляет собой rar архив с файлами (распаковать онлайн), которые открываются в программах:
- Microsoft Word
Описание
Вариант №19
Контрольная работа по методам классификации
Выбор варианта: N = 19
Вариант выборки для метода ближайших соседей определяется по формуле:
N_в=((N+13)mod11)+1=11.
Обучающая последовательность и тестовый объект:
11) (X,Y)={ (7,2,1), (8,1,1), (8,7,1), (8,2,1), (9,9,1), (6,8,1), (13,8,2), (6,1,2),(11,8,2), (4,12,3), (7,14,3), (1,8,3), (9,6,3)}: тестовый объект x’=(13,10).
Вариант весовой функции определяется по формуле:
N_вф=((N+7)mod4)+1=3.
Весовая функция:
3) — метод парзеновского окна фиксированной ширины , h=0.1.
Вариант выборки для метода построения решающего дерева определяется по формуле:
N_вд=((N*N+2)mod11)+1=1.
Используется та же обучающая последовательность и тестовый объект:
1) (X,Y)={(1,8,1), (1,3,1), (3,5,1), (1,1,1), (2,7,1), (3,8,1), (2,4,1), (8,7,2),(11,12,2), (12,14,2), (8,13,2)}: тестовый объект x’=(5,8).
------------------------------------------------------------------------------
Задание:
Построить классификатор на основе метода ближайших k соседей и определить класс тестового значения.
Построить классификатор на основе алгоритма CART построения дерева принятия решений.
=============================================
=============================================
Вариант №19
Лабораторные работы 1
Варианты (вариант № 19): функции №3, выборки № 2, ядра № 3.
2. Метод парзеновского окна с фиксированным h. Используется прямоугольное ядро.
=============================================
Лабораторная работа 2. «Решающие деревья»
1 Таблицы, показывающие % точности предсказания типа атак в зависимости от изменения параметров дерева решений и леса
Таблица 1. Результаты N запусков Решающего дерева
Максимальная глубина дерева
(max_depth) Максимальное количество
листьев
(max_leaf_nodes) точность предсказания в
процентах
1 1 2 83,9%
2 5 10 93,2%
3 50 100 98,8%
4 100 200 99,0%
Таблица 2. Результаты M запусков леса
Максимальная глубина дерева
(max_depth) Максимальное количество
листьев
(max_leaf_nodes) Количество деревьев
(n_estimators) точность предсказания в
процентах
1 1 1 2 77,7%
2 5 5 10 93,4%
3 50 50 100 96,9%
4 100 100 200 99,9%
2 Параметры дерева, на которых достигается наилучшая точность предсказания
Максимальная глубина дерева (max_depth): 100
Максимальное количество листьев (max_leaf_nodes): 200
3 Параметры леса, на которых достигается наилучшая точность предсказания
Максимальная глубина дерева (max_depth): 100
Максимальное количество листьев (max_leaf_nodes): 100
Количество деревьев (n_estimators): 200
4 Листинг программы
=============================================
Лабораторная работа 3. «Регрессия»
1 Результаты работы программы
Таблица 1. Результаты 10 запусков
Номер запуска Процент правильности предсказания типа статьи
1 98.7 %
2 98.5 %
3 98.7 %
4 98.5 %
5 98.6 %
6 98.6 %
7 98.3 %
8 98.8 %
9 98.7 %
10 98.6 %
Среднее значение предсказания типа статьи исходя из 10 запусков: 98,6 %.
2 Листинг программы
=============================================
Контрольная работа по методам классификации
Выбор варианта: N = 19
Вариант выборки для метода ближайших соседей определяется по формуле:
N_в=((N+13)mod11)+1=11.
Обучающая последовательность и тестовый объект:
11) (X,Y)={ (7,2,1), (8,1,1), (8,7,1), (8,2,1), (9,9,1), (6,8,1), (13,8,2), (6,1,2),(11,8,2), (4,12,3), (7,14,3), (1,8,3), (9,6,3)}: тестовый объект x’=(13,10).
Вариант весовой функции определяется по формуле:
N_вф=((N+7)mod4)+1=3.
Весовая функция:
3) — метод парзеновского окна фиксированной ширины , h=0.1.
Вариант выборки для метода построения решающего дерева определяется по формуле:
N_вд=((N*N+2)mod11)+1=1.
Используется та же обучающая последовательность и тестовый объект:
1) (X,Y)={(1,8,1), (1,3,1), (3,5,1), (1,1,1), (2,7,1), (3,8,1), (2,4,1), (8,7,2),(11,12,2), (12,14,2), (8,13,2)}: тестовый объект x’=(5,8).
------------------------------------------------------------------------------
Задание:
Построить классификатор на основе метода ближайших k соседей и определить класс тестового значения.
Построить классификатор на основе алгоритма CART построения дерева принятия решений.
=============================================
=============================================
Вариант №19
Лабораторные работы 1
Варианты (вариант № 19): функции №3, выборки № 2, ядра № 3.
2. Метод парзеновского окна с фиксированным h. Используется прямоугольное ядро.
=============================================
Лабораторная работа 2. «Решающие деревья»
1 Таблицы, показывающие % точности предсказания типа атак в зависимости от изменения параметров дерева решений и леса
Таблица 1. Результаты N запусков Решающего дерева
Максимальная глубина дерева
(max_depth) Максимальное количество
листьев
(max_leaf_nodes) точность предсказания в
процентах
1 1 2 83,9%
2 5 10 93,2%
3 50 100 98,8%
4 100 200 99,0%
Таблица 2. Результаты M запусков леса
Максимальная глубина дерева
(max_depth) Максимальное количество
листьев
(max_leaf_nodes) Количество деревьев
(n_estimators) точность предсказания в
процентах
1 1 1 2 77,7%
2 5 5 10 93,4%
3 50 50 100 96,9%
4 100 100 200 99,9%
2 Параметры дерева, на которых достигается наилучшая точность предсказания
Максимальная глубина дерева (max_depth): 100
Максимальное количество листьев (max_leaf_nodes): 200
3 Параметры леса, на которых достигается наилучшая точность предсказания
Максимальная глубина дерева (max_depth): 100
Максимальное количество листьев (max_leaf_nodes): 100
Количество деревьев (n_estimators): 200
4 Листинг программы
=============================================
Лабораторная работа 3. «Регрессия»
1 Результаты работы программы
Таблица 1. Результаты 10 запусков
Номер запуска Процент правильности предсказания типа статьи
1 98.7 %
2 98.5 %
3 98.7 %
4 98.5 %
5 98.6 %
6 98.6 %
7 98.3 %
8 98.8 %
9 98.7 %
10 98.6 %
Среднее значение предсказания типа статьи исходя из 10 запусков: 98,6 %.
2 Листинг программы
=============================================
Дополнительная информация
Проверил(а): Ракитский Антон Андреевич
Оценка: Отлично
Дата оценки: 07.10.2023г.
Помогу с вашим вариантом, другой дисциплиной, онлайн-тестом, либо сессией под ключ.
E-mail: sneroy20@gmail.com
E-mail: ego178@mail.ru
Оценка: Отлично
Дата оценки: 07.10.2023г.
Помогу с вашим вариантом, другой дисциплиной, онлайн-тестом, либо сессией под ключ.
E-mail: sneroy20@gmail.com
E-mail: ego178@mail.ru
Похожие материалы
Контрольная и Лабораторные работы 1-3 по дисциплине: Интеллектуальные технологии информационной безопасности. Вариант №10
IT-STUDHELP
: 7 октября 2023
Вариант No10
Контрольная работа
Выбор варианта:
N = 10
Вариант выборки для метода ближайших соседей определяется по формуле:
N_в=((N+13)mod11)+1=2
Вариант весовой функции определяется по формуле:
N_вф=((N+7)mod4)+1=2
Вариант выборки для метода построения решающего дерева определяется по формуле:
N_вд=((N*N+2)mod11)+1=4
Обучающая последовательность и тестовый объект для метода ближайших соседей:
2) (X,Y)={(2,7,1), (6,6,1), (8,6,1), (7,5,1), (5,9,1), (9,9,2), (11,2,2), (6,4,2), (10,9,2), (8,6,3)
1150 руб.
Контрольная и Лабораторные работы 1-3 по дисциплине: Интеллектуальные технологии информационной безопасности. Вариант №5
IT-STUDHELP
: 19 июня 2023
Контрольная работа
Вариант No5
Выбор варианта:
N = 5
Вариант выборки для метода ближайших соседей определяется по формуле:
N_в=((N+13)mod11)+1=8
Вариант весовой функции определяется по формуле:
N_вф=((N+7)mod4)+1=1
Вариант выборки для метода построения решающего дерева определяется по формуле:
N_вд=((N*N+2)mod11)+1=6
Обучающая последовательность и тестовый объект для метода ближайших соседей:
8) (X,Y)={ (5,9,1), (2,9,1), (3,7,1), (8,8,2), (14,4,2), (10,1,2), (12,4,2), (7,7,2), (12,7,2), (9,13,3
1450 руб.
Лабораторные работы 1-3 по дисциплине: Интеллектуальные технологии информационной безопасности. Вариант №19
IT-STUDHELP
: 7 октября 2023
Вариант №19
Лабораторные работы 1
Варианты (вариант № 19): функции №3, выборки № 2, ядра № 3.
2. Метод парзеновского окна с фиксированным h. Используется прямоугольное ядро.
=============================================
Лабораторная работа 2. «Решающие деревья»
1 Таблицы, показывающие % точности предсказания типа атак в зависимости от изменения параметров дерева решений и леса
Таблица 1. Результаты N запусков Решающего дерева
Максимальная глубина дерева
(max_depth) Максимальное количеств
900 руб.
Контрольная работа по дисциплине: Интеллектуальные технологии информационной безопасности. Вариант №19
IT-STUDHELP
: 7 октября 2023
Вариант №19
Контрольная работа по методам классификации
Выбор варианта: N = 19
Вариант выборки для метода ближайших соседей определяется по формуле:
N_в=((N+13)mod11)+1=11.
Обучающая последовательность и тестовый объект:
11) (X,Y)={ (7,2,1), (8,1,1), (8,7,1), (8,2,1), (9,9,1), (6,8,1), (13,8,2), (6,1,2),(11,8,2), (4,12,3), (7,14,3), (1,8,3), (9,6,3)}: тестовый объект x’=(13,10).
Вариант весовой функции определяется по формуле:
N_вф=((N+7)mod4)+1=3.
Весовая функция:
3) — метод парзеновск
600 руб.
Лабораторная работа №3 по дисциплине: Интеллектуальные технологии информационной безопасности. “Регрессия”. Для всех вариантов
SibGUTI2
: 25 июля 2024
Лабораторная работа No3
“Регрессия”
Целью данной лабораторной работы является разработка программы, реализующей применение метода логистической регрессии к заданному набору данных.
В набор данных входят 2 файла, в «True» находится информация о правдивых новостных заметках, в «Fake.csv» находится информация о поддельных новостях. Каждый файл состоит из следующих полей:
1. (title) – заголовок статьи;
2. (text) – содержимое статьи;
3. (subject) – тип новости;
4. (date) – дата опубликования стать
350 руб.
Лабораторные работы 1-3 по дисциплине: Интеллектуальные технологии информационной безопасности. Вариант №10
IT-STUDHELP
: 7 октября 2023
Лабораторная работа 1. «Метод k ближайших соседей»
Вариант 10
Выбор варианта:
NC = 10
Тип классификатора:
NВ = (NC mod 3) + 1 = 2
3. Метод парзеновского окна с фиксированным h.
Вариант функции ядра для метода празеновского окна определяется по формуле:
NЯ = ((NC · 6 + 13) mod 8 mod 3) + 1 = 2
2. T — треугольное K(x) = (1 − r)[r ≤ 1]
Вариант файла с данными для классификации определяется по формуле:
NФ = ((NC + 2) mod 5) + 1 = 3
Файл: data3.csv.
1 Результаты тестирования
Надёжность предсказа
900 руб.
Лабораторные работы 1-3 по дисциплине: Интеллектуальные технологии информационной безопасности. Вариант №5
IT-STUDHELP
: 19 июня 2023
Лабораторная работа 1. «Метод k ближайших соседей»
Вариант 05
Выбор варианта:
NC = 5
Тип классификатора:
NВ = (NC mod 3) + 1 = 3
3. Метод парзеновского окна с относительным размером окна.
Вариант функции ядра для метода празеновского окна определяется по формуле:
NЯ = ((NC · 6 + 13) mod 8 mod 3) + 1 = 1
1. Q — квадратическое K(x) = (1 - r2)2[r ≤ 1]
Вариант файла с данными для классификации определяется по формуле:
NФ = ((NC + 2) mod 5) + 1 = 3
Файл: data3.csv.
1 Результаты тестирования
Над
1000 руб.
Онлайн Тест по дисциплине: Интеллектуальные технологии информационной безопасности.
IT-STUDHELP
: 29 сентября 2023
Вопрос No1
К основным задачам машинного обучения относятся:
Поиск скрытых закономерностей, генерация новых знаний
Классификация, кластеризация, регрессия, уменьшение размерности и прогнозирование
Обработка специализированных наборов данных, генерация новых наборов данных, сжатие данных
Повышение точности прогноза по сравнению с некоторой существующей прогнозирующей или решающей моделью, виртуализация данных, оптимизация
Вопрос No2
MSE это
Measure Square Evaluating, оценка квадратичной
700 руб.
Другие работы
СИБИТ_Кейс_Управление проектами
gerasimov74
: 3 апреля 2020
КЕЙС-ТЕХНОЛОГИИ
1. Компания с ограниченной ответственностью "MR" разрабатывает строительный проект небольшого масштаба. Основные операции проекта, соответствующие им непосредственно предшествующие операции и время их выполнения приведены в таблице:
Операция Непосредственно Продолжительность,
предшествующая дней
операция
А - 4
В - 6
C A,B 7
D B 3
E C 4
F D 5
G E,F 3
Требуется: Дать иллюстрацию проекта с помощью стрелочного сетевого графа.
200 руб.
Розрахунок відновлення деталей передньої підвіски автомобіля ВАЗ-2101
ostah
: 16 ноября 2014
ЗМІСТ
ВСТУП.......................................................................................................................................6
1 АНАЛІЗ УМОВ РОБОТИ ДЕТАЛЕЙ ПЕРЕДНЬОЇ ПІДВІСКИ АВТОМОБІЛЯ
ВАЗ-2101
1.1 Призначення сферичних шарнірів..............................................................................7
1.2 Визначення стану деталей передньої підвіски………………………………….….9
1.3 Умови роботи сферичних шарнірів та фактори, які впливають на швидкість
зносу вузла.........
250 руб.
Турбинная секция турбобура 3ТСШ1-195-Чертеж-Оборудование для бурения нефтяных и газовых скважин-Курсовая работа-Дипломная работа
https://vk.com/aleksey.nakonechnyy27
: 25 мая 2016
Турбинная секция турбобура 3ТСШ1-195-(Формат Компас-CDW, Autocad-DWG, Adobe-PDF, Picture-Jpeg)-Чертеж-Оборудование для бурения нефтяных и газовых скважин-Курсовая работа-Дипломная работа
400 руб.
Контрольная работа по дисциплине: «Корпоративные финансы» , Вариант №8
ord1k
: 4 декабря 2015
Задание 1 (теоретическое).
Тема: «Подготовка презентации по теоретическому вопросу»
Цель: рассмотреть теоретические принципы управления корпоративными финансами в соответствии с определенной тематикой.
Задание:
В соответствии с номером варианта (номер варианта соответствует двум последним цифрам пароля студента) рассмотреть теоретическое содержание вопроса управления финансами корпораций.
По итогам рассмотрения материала представить презентацию по соответствующему вопросу в соответствии с тре
150 руб.