Контрольная + Лабораторные работы 1, 2, 3 "Теория сложности вычислительных процессов и структур". Вариант №8
Состав работы
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Работа представляет собой rar архив с файлами (распаковать онлайн), которые открываются в программах:
- Программа для просмотра текстовых файлов
- Microsoft Word
Описание
Работы зачтены. В файле - 3 лабораторные работы + Контрольная по предмету
Дополнительная информация
Задание на контрольную работу
Написать программу, которая оптимальным образом расставляет скобки при перемножении матриц . Матрицы имеют следующие размерности: 1 2 3 4 5 6 7 8 9 10 11 12 M M M M M M M M M M M M
1 0 1 2 1 2 3 2 3 4 3 4 5 4 5 6 5 6 7 6 7 8 7 8 9 8 9 10 9 10 11 10 11 12 11 12 [ ], [ ], [ ], [ ], [ ], [ ], [ ], [ ], [ ], [ ], [ ], [ ]. M r r M r r M r r M r r M r r M r r M r r M r r M r r M r r M r r M r r
Размерности матриц считать из файла.
Вывести промежуточные вычисления, результат расстановки скобок и трудоемкость полученной расстановки.
. Номер варианта r0 r1 r2 r3 r4 r5 r6 r7 r8 r9 r10 r11 r12
0 8 6 2 5 9 3 6 4 7 3 9 7 2
1 6 9 4 8 9 3 5 6 8 7 2 6 8
2 5 3 2 6 9 7 4 9 2 6 7 4 7
3 4 6 6 9 7 5 6 4 2 9 3 7 5
4 9 5 2 8 5 6 9 8 3 4 7 9 2
5 5 8 3 4 9 5 7 6 8 4 9 2 6
6 6 3 9 4 9 4 8 6 4 7 9 9 6
7 2 2 9 6 9 3 7 7 9 8 3 4 2
8 5 6 8 7 2 3 2 9 4 4 4 8 5
9 6 5 5 9 7 8 9 8 3 2 8 4 6
ЛАБ 1
Написать программу, которая по алгоритму Краскала находит остов минимального веса для связного взвешенного неориентированного графа, имеющего 10 вершин. Граф задан матрицей смежности (0 означает, что соответствующей дуги нет). Данные считать из файла.
Вывести ребра остова минимального веса в порядке их присоединения и вес остова.
Номер варианта выбирается по последней цифре пароля.
Вариант 8
0 14 9 3 22 17 16 0 14 18
14 0 19 0 2 0 11 14 21 20
9 19 0 17 20 22 4 4 8 9
3 0 17 0 11 3 20 12 10 15
22 2 20 11 0 14 19 17 15 19
17 0 22 3 14 0 0 6 10 0
16 11 4 20 19 0 0 3 11 9
0 14 4 12 17 6 3 0 7 4
14 21 8 10 15 10 11 7 0 7
18 20 9 15 19 0 9 4 7 0
ЛАБ 2
Написать программу, которая по алгоритму Дейкстры (если Ваша фамилия начинается с гласной буквы) или Форда-Беллмана (если Ваша фамилия начинается с согласной буквы) находит кратчайшее расстояние от вершины с номером Вашего варианта до всех остальных вершин связного взвешенного неориентированного графа, имеющего 10 вершин (нумерация вершин начинается с 0).
Граф задан матрицей смежности (0 означает, что соответствующей дуги нет). Данные считать из файла.
Вывести все найденные кратчайшие расстояния и соответствующие им пути (в виде последовательности ребер).
Номер варианта выбирается по последней цифре пароля.
Вариант 8
0 11 0 0 1 1 4 0 0 3
11 0 5 6 6 8 5 11 4 8
0 5 0 3 9 6 6 9 2 11
0 6 3 0 7 6 3 7 11 8
1 6 9 7 0 3 3 9 9 0
1 8 6 6 3 0 9 3 1 7
4 5 6 3 3 9 0 3 7 10
0 11 9 7 9 3 3 0 0 3
0 4 2 11 9 1 7 0 0 10
3 8 11 8 0 7 10 3 10 0
ЛАБ 3
Имеется склад, на котором присутствует некоторый ассортимент товаров. Запас каждого товара неограничен. У каждого товара своя стоимость сi и
масса mi. Написать программу, которая методом динамического программирования формирует набор товаров максимальной стоимости таким образом, чтобы его суммарная масса не превышала заданную грузоподъемность М.
Вывести промежуточные вычисления, сформированный набор, его стоимость и массу.
Номер варианта выбирается по последней цифре пароля.
Вариант 8
Номер товара, i mi сi M
1 8 41 57
2 11 56
3 7 28 52
4 6 32
Написать программу, которая оптимальным образом расставляет скобки при перемножении матриц . Матрицы имеют следующие размерности: 1 2 3 4 5 6 7 8 9 10 11 12 M M M M M M M M M M M M
1 0 1 2 1 2 3 2 3 4 3 4 5 4 5 6 5 6 7 6 7 8 7 8 9 8 9 10 9 10 11 10 11 12 11 12 [ ], [ ], [ ], [ ], [ ], [ ], [ ], [ ], [ ], [ ], [ ], [ ]. M r r M r r M r r M r r M r r M r r M r r M r r M r r M r r M r r M r r
Размерности матриц считать из файла.
Вывести промежуточные вычисления, результат расстановки скобок и трудоемкость полученной расстановки.
. Номер варианта r0 r1 r2 r3 r4 r5 r6 r7 r8 r9 r10 r11 r12
0 8 6 2 5 9 3 6 4 7 3 9 7 2
1 6 9 4 8 9 3 5 6 8 7 2 6 8
2 5 3 2 6 9 7 4 9 2 6 7 4 7
3 4 6 6 9 7 5 6 4 2 9 3 7 5
4 9 5 2 8 5 6 9 8 3 4 7 9 2
5 5 8 3 4 9 5 7 6 8 4 9 2 6
6 6 3 9 4 9 4 8 6 4 7 9 9 6
7 2 2 9 6 9 3 7 7 9 8 3 4 2
8 5 6 8 7 2 3 2 9 4 4 4 8 5
9 6 5 5 9 7 8 9 8 3 2 8 4 6
ЛАБ 1
Написать программу, которая по алгоритму Краскала находит остов минимального веса для связного взвешенного неориентированного графа, имеющего 10 вершин. Граф задан матрицей смежности (0 означает, что соответствующей дуги нет). Данные считать из файла.
Вывести ребра остова минимального веса в порядке их присоединения и вес остова.
Номер варианта выбирается по последней цифре пароля.
Вариант 8
0 14 9 3 22 17 16 0 14 18
14 0 19 0 2 0 11 14 21 20
9 19 0 17 20 22 4 4 8 9
3 0 17 0 11 3 20 12 10 15
22 2 20 11 0 14 19 17 15 19
17 0 22 3 14 0 0 6 10 0
16 11 4 20 19 0 0 3 11 9
0 14 4 12 17 6 3 0 7 4
14 21 8 10 15 10 11 7 0 7
18 20 9 15 19 0 9 4 7 0
ЛАБ 2
Написать программу, которая по алгоритму Дейкстры (если Ваша фамилия начинается с гласной буквы) или Форда-Беллмана (если Ваша фамилия начинается с согласной буквы) находит кратчайшее расстояние от вершины с номером Вашего варианта до всех остальных вершин связного взвешенного неориентированного графа, имеющего 10 вершин (нумерация вершин начинается с 0).
Граф задан матрицей смежности (0 означает, что соответствующей дуги нет). Данные считать из файла.
Вывести все найденные кратчайшие расстояния и соответствующие им пути (в виде последовательности ребер).
Номер варианта выбирается по последней цифре пароля.
Вариант 8
0 11 0 0 1 1 4 0 0 3
11 0 5 6 6 8 5 11 4 8
0 5 0 3 9 6 6 9 2 11
0 6 3 0 7 6 3 7 11 8
1 6 9 7 0 3 3 9 9 0
1 8 6 6 3 0 9 3 1 7
4 5 6 3 3 9 0 3 7 10
0 11 9 7 9 3 3 0 0 3
0 4 2 11 9 1 7 0 0 10
3 8 11 8 0 7 10 3 10 0
ЛАБ 3
Имеется склад, на котором присутствует некоторый ассортимент товаров. Запас каждого товара неограничен. У каждого товара своя стоимость сi и
масса mi. Написать программу, которая методом динамического программирования формирует набор товаров максимальной стоимости таким образом, чтобы его суммарная масса не превышала заданную грузоподъемность М.
Вывести промежуточные вычисления, сформированный набор, его стоимость и массу.
Номер варианта выбирается по последней цифре пароля.
Вариант 8
Номер товара, i mi сi M
1 8 41 57
2 11 56
3 7 28 52
4 6 32
Похожие материалы
Лабораторные работы 1, 2, 3 "Теория сложности вычислительных процессов и структур". Вариант №8
Daniil2001
: 14 ноября 2023
Работы зачтены. Вторая лабораторная выполнена - по алгоритму Дейкстры
120 руб.
Лабораторная №5 (вариант 3) "Теория сложностей вычислительных процессов и структур"
Greenberg
: 1 августа 2011
Задачи динамического программирования. Задача грабителя (задача “о рюкзаке”).
Имеется склад, на котором присутствует некоторый ассортимент товаров. Запас каждого товара неограничен. У каждого товара своя стоимость Ci и масса mi. Написать программу, которая методом динамического программирования формирует такой набор товаров, чтобы его суммарная масса не превышала заданную грузоподъемность М, и стоимость была бы максимальной. На экран вывести промежуточные вычисления, сформированный набор, его ст
49 руб.
Лабораторная №4 (вариант 3) "Теория сложностей вычислительных процессов и структур"
Greenberg
: 1 августа 2011
Графы. Нахождение кратчайшего расстояния между двумя вершинами с помощью алгоритма Дейкстры.
Написать программу, которая по алгоритму Дейкстры находит кратчайшее расстояние от указанной вершины до всех остальных вершин связного взвешенного неориентированного графа, имеющего 6 вершин (нумерация вершин начинается с 0). Граф задан матрицей весов дуг, соединяющих всевозможные пары вершин (0 означает, что соответствующей дуги нет). Данные считать из файла.
Номер варианта выбирается по последней цифр
49 руб.
Лабораторная №2 (вариант 3) "Теория сложностей вычислительных процессов и структур"
Greenberg
: 31 июля 2011
Графы. Поиск остова минимального веса.
Написать программу, которая по алгоритму Краскала находит остов минимального веса для связного взвешенного неориентированного графа, имеющего 7 вершин. Граф задан матрицей весов дуг, соединяющих всевозможные пары вершин (0 означает, что соответствующей дуги нет). Данные считать из файла.
Номер варианта выбирается по последней цифре пароля...
49 руб.
Лабораторная работа № 3 Теория сложностей вычислительных процессов и структур. Вариант 0
Despite
: 14 мая 2015
Лабораторная работа № 3
Графы. Нахождение кратчайшего расстояния между двумя вершинами с помощью алгоритма Форда-Беллмана
Написать программу, которая по алгоритму Форда-Беллмана находит кратчайшее расстояние от указанной вершины до всех остальных вершин связного взвешенного неориентированного графа, имеющего 7 вершин (нумерация вершин начинается с 0). Граф задан матрицей весов дуг, соединяющих всевозможные пары вершин (0 означает, что соответствующей дуги нет). Данные считать из файла.
Номер ва
60 руб.
Лабораторная работа № 3. Теория сложностей вычислительных процессов и структур, Вариант № 1
jashma28
: 20 мая 2012
Написать программу, которая по алгоритму Форда-Беллмана находит кратчайшее расстояние от указанной вершины до всех остальных вершин связного взвешенного неориентированного графа, имеющего 7 вершин (нумерация вершин начинается с 0). Граф задан матрицей весов дуг, соединяющих всевозможные пары вершин (0 означает, что соответствующей дуги нет). Данные считать из файла.
Номер варианта выбирается по последней цифре пароля.
Вариант 1
Вершина 0.
800 руб.
Вариант №10. Лабораторные работы №1-3. Теория сложности вычислительных процессов и структур ДО Сибгути
Petr1
: 25 ноября 2019
Лабораторная работа №1
Поиск минимального остова графа
Задание на лабораторную работу
Написать программу, которая по алгоритму Краскала находит остов
минимального веса для связного взвешенного неориентированного графа,
имеющего 10 вершин. Граф задан матрицей смежности (0 означает, что
соответствующей дуги нет). Данные считать из файла.
Вывести ребра остова минимального веса в порядке их присоединения и вес
остова.
Номер варианта выбирается по последней цифре пароля.
Вариант 0
0 10 23 11 0 18
400 руб.
Контрольная и Лабораторные работы 1-3 по дисциплине: Теория сложностей вычислительных процессов и структур. Вариант №8
IT-STUDHELP
: 5 декабря 2022
Лабораторная работа №1
по дисциплине:
«Теория сложности вычислительных процессов и структур»
Задание
Написать программу, которая по алгоритму Краскала находит остов минимального веса для связного взвешенного неориентированного графа, имеющего 10 вершин. Граф задан матрицей смежности (0 означает, что соответствующей дуги нет). Данные считать из файла.
Вывести ребра остова минимального веса в порядке их присоединения и вес остова.
Номер варианта выбирается по последней цифре пароля.
Вариант 8
850 руб.
Другие работы
Мотивация и её влияние на производительность труда
alfFRED
: 9 августа 2013
Введение……………………………………………………………………………….2.
1.Развитие системы мотивации
1.1 Понятие мотива, мотивационной структуры, стимулов. Принципиальное отличие мотивирования и стимулирования…………………………………………………………....3.
1.2 Первоначальные теории мотивирования…………………………………………………..4.
2.Современные теории мотивации…………………………………………………..5.
2.1 Содержательные теории мотивации………………………………………………………..5.
2.2 Процессуальные теории мотивации………………………………………………………..8.
3.Формы и методы экономического стимулированиятруда
н
10 руб.
Гидромеханика РГУ нефти и газа им. Губкина Гидродинамика Задача 1 Вариант 7
Z24
: 6 декабря 2025
Насос подает жидкость из подземной ёмкости с избыточным давлением газа на поверхности жидкости. На всасывающей линии (длина l, диаметр d, трубы сварные, бывшие в эксплуатации) имеются местные сопротивления: приёмная коробка с клапаном и сеткой, колено и кран с коэффициентом сопротивления ξкр. Показание вакуумметра на входе в насос равно рv, расход жидкости Q, температура t°C.
Определить рабочую высоту всасывания насоса hвс и предельную высоту из условия отсутствия кавитации на входе в насос.
200 руб.
Двигатель ЯМЗ-236НЕ (сборочный чертеж)
maobit
: 12 апреля 2018
Двигатель ЯМЗ-236 базовый дизель Ярославского моторного завода. Семейство шести цилиндровых V-образных ЯМЗ-236 Евро-0, пришло на смену рядным четырех ЯМЗ-204 и шести цилиндровым ЯМЗ-206 моторам, выпуск которых прекратили более двадцати лет назад. Все остальные дизели ЯМЗ, за исключение новых рядных семейств, это дальнейшее развитие серии ЯМЗ-236.
Технические характеристики двигателей семейства ЯМЗ-236 различаются достаточно сильно. Атмосферный дизель ЯМЗ-236 Евро-0 самый слабый в линейке силовы
690 руб.
Акционерные общества и их виды
evelin
: 9 ноября 2013
При переходе от командной экономике к рыночной, Россия большое внимание уделила акционерным обществам и частным предпринимателям. В последнее время высшее руководство страны всё чаще говорит о поддержке малого бизнеса в условиях мирового финансового кризиса, а акционерные общества на протяжении всего времени с момента распада СССР являются основной организационно-правовой формой коммерческих организаций.
Правовая база для формирования акционерных обществ берёт своё начало с принятия Закона «Об
5 руб.