Экзаменационная работа по дисциплине: Алгоритмы и вычислительные методы оптимизации. Билет №3
Состав работы
|
|
|
|
Работа представляет собой zip архив с файлами (распаковать онлайн), которые открываются в программах:
- Microsoft Word
Описание
Билет №3
Все вычисления проводить с использованием простых дробей, округления не допускаются. Все нецелые числа в ответе должны быть записаны в виде простых дробей.
1. Решить графически задачу линейного программирования:
Z=5x1+x2 -> max
2x1+x2<=12
x1-2x2<=1
4x1+3x2>=15
x1,x2>=0
2. Составить функцию Лагранжа и проверить выполнение условий Куна-Таккера (найти параметры Лi) для оптимальной точки (4;3) задачи нелинейного программирования
Z=(x1+2)^(2)+(x2-7)^(2) -> min
2x1-2x2>=6
x1+x2<=11
x1-2x2<=4
x1,x2>=0
Все вычисления проводить с использованием простых дробей, округления не допускаются. Все нецелые числа в ответе должны быть записаны в виде простых дробей.
1. Решить графически задачу линейного программирования:
Z=5x1+x2 -> max
2x1+x2<=12
x1-2x2<=1
4x1+3x2>=15
x1,x2>=0
2. Составить функцию Лагранжа и проверить выполнение условий Куна-Таккера (найти параметры Лi) для оптимальной точки (4;3) задачи нелинейного программирования
Z=(x1+2)^(2)+(x2-7)^(2) -> min
2x1-2x2>=6
x1+x2<=11
x1-2x2<=4
x1,x2>=0
Дополнительная информация
Комментарии: Оценка - отлично!
Дата сдачи: январь 2024 г.
Преподаватель: Галкина М.Ю.
Дата сдачи: январь 2024 г.
Преподаватель: Галкина М.Ю.
Похожие материалы
Экзаменационная работа по дисциплине: Алгоритмы и вычислительные методы оптимизации. Билет №3
Алексей134
: 5 марта 2021
Билет №3
1. Решить графически задачу линейного программирования:
Z=5x1+x2 -> max
2x1+x2<=12
x1-2x2<=1
4x1+3x2>=15
x1,x2>=0
2. Составить функцию Лагранжа и проверить выполнение условий Куна-Таккера (найти параметры Лi) для оптимальной точки (4;3) задачи нелинейного программирования.
Z=(x1+2)^(2)+(x2-7)^(2) -> min
2x1-2x2>=6
x1+x2<=11
x1-2x2<=4
x1,x2>=0
120 руб.
Экзаменационная работа по дисциплине: Алгоритмы и вычислительные методы оптимизации. Билет №3
Roma967
: 4 февраля 2020
Билет №3
Все вычисления проводить с использованием простых дробей, округления не допускаются. Все нецелые числа в ответе должны быть записаны в виде простых дробей.
1. Решить графически задачу линейного программирования:
Z=5x1+x2 -> max
2x1+x2<=12
x1-2x2<=1
4x1+3x2>=15
x1,x2>=0
2. Составить функцию Лагранжа и проверить выполнение условий Куна-Таккера (найти параметры Лi) для оптимальной точки (4;3) задачи нелинейного программирования.
Z=(x1+2)^(2)+(x2-7)^(2) -> min
2x1-2x2>=6
x1+x2<=11
x1-2x2
600 руб.
Экзаменационная работа по дисциплине: Алгоритмы и вычислительные методы оптимизации. Билет 11
Roma967
: 2 февраля 2025
Билет №11
Все вычисления проводить с использованием простых дробей, округления не допускаются. Все нецелые числа в ответе должны быть записаны в виде простых дробей.
1. Решить графически задачу линейного программирования:
Z=-5x1+x2 -> min
{-x1+4x2<=11
{4x1-3x2<=21
{2x1+5x2>=17
{x1,x2>=0
2. Найти целочисленное решение задачи линейного программирования методом Гомори.
Z=x1+x2 -> max
{-x1+x2<=1
{3x1+x2<=4
{x1,x2>=0
800 руб.
Экзаменационная работа По дисциплине: Алгоритмы и вычислительные методы оптимизации. Билет 5
alexadubinina
: 21 ноября 2024
Экзаменационный Билет No5
Все вычисления проводить с использованием простых дробей, округления не допускаются. Все нецелые числа в ответе должны быть записаны в виде простых дробей.
1. Найти целочисленное решение задачи линейного программирования методом Гомори.
2. Составить функцию Лагранжа и проверить выполнение условий Куна-Таккера (найти параметры i) для оптимальной точки (8;3) задачи нелинейного программирования.
800 руб.
Экзаменационная работа по дисциплине: Алгоритмы и вычислительные методы оптимизации. Билет №13
Roma967
: 30 октября 2024
Все вычисления проводить с использованием простых дробей, округления не допускаются. Все нецелые числа в ответе должны быть записаны в виде простых дробей.
1. Найти базисное решение системы линейных уравнений методом Жордана-Гаусса.
{x1-x2+x3=1
{2x1+x2-x4=7
{x1+x2-7x3+x4=6
{6x1-11x2-4x3+5x4=1
2. Решить графически игру, заданную платежной матрицей:
(8 5 3 6 11)
(4 7 9 5 3)
600 руб.
Экзаменационная работа по дисциплине: Алгоритмы и вычислительные методы оптимизации. Билет №8
Roma967
: 30 октября 2024
Билет №8
1. Решить графически задачу линейного программирования:
Z=-2x1+8x2 -> max
{-2x1+3x2<=9
{x1+2x2<=13
4x1-x2<=16
x1, x2>=0
2. Решить транспортную задачу.
B1 B2 B3 Запасы
A1 8 4 2 80
A2 2 2 7 40
A3 2 2 1 80
Потребности 30 110 60
600 руб.
Экзаменационная работа по дисциплине: Алгоритмы и вычислительные методы оптимизации. Билет №4
Roma967
: 15 октября 2023
Билет №4
Все вычисления проводить с использованием простых дробей, округления не допускаются. Все нецелые числа в ответе должны быть записаны в виде простых дробей.
1. Перейти от канонической к симметричной форме записи задачи линейного программирования.
Z=-5x1+13x2+3x3-9x4 -> min
2x1-4x2-x3+x4=-3
-3x1+7x2+2x3-x4=9
x1+4x2+x3+x5=15
xi>=0, i=1,...,5
2. Известно оптимальное решение X*=(0;1;0;0) задачи линейного программирования:
Z=-8x1-7x2-14x3-4x4 -> max
x1+2x2+x3+x4>=2
x1-2x2+2x3-2x4<=7
xi>=0,
600 руб.
Экзаменационная работа по дисциплине: Алгоритмы и вычислительные методы оптимизации. Билет №13
IT-STUDHELP
: 17 мая 2021
Билет No 13
Все вычисления проводить с использованием простых дробей, округления не допускаются. Все нецелые числа в ответе должны быть записаны в виде простых дробей.
Найти базисное решение системы линейных уравнений методом Жордана-Гаусса.
{(x_1-x_2+x_3=1@2x_1+x_2-x_4=7@x_1+x_2-7x_3+x_4=6@6x_1-11x_2-4x_3+5x_4=1)
Решить графически игру, заданную платежной матрицей:
((8&5&3&6&11@4&7&9&5&3))
340 руб.
Другие работы
Контрольная работа "Преломление - оптика". Вариант №23
SuperMind
: 1 июня 2015
Содержание
1. Первая часть
1.1 Определение показателей преломления по формуле Селмейера
1.2 Определение зависимости второй производной сердечника от длины волны
1.3 Определение зависимости коэффициента материальной дисперсии от длины волны
Выводы
2. Вторая часть
2.1 Определение величины дисперсии и скорости передачи
Выводы
Заключение
Список литературы
500 руб.
Современные технологии в программировании. ЛАБОРАТОРНАЯ 1.
aleshin
: 22 октября 2022
Лабораторная работа №1
Конвертор чисел из десятичной системы счисления в систему счисления с заданным основанием
Цель: Сформировать практические навыки реализации классов на языке C#.
Задание 1
1. Реализовать преобразователь действительных чисел со знаком из десятичной системы счисления в систему счисления с заданным основанием p, в соответствии с приведенной ниже спецификацией, используя класс. Основание системы счисления p принадлежит диапазону значений от 2 до 16.
2. Протестировать каждый ме
44 руб.
Онлайн ТЕСТ Архитектура ЭВМ
sibguti-help
: 3 ноября 2024
Вопрос №1
Выбрать верные варианты обозначений для наименований форматов представления данных в памяти ЭВМ:
Вопрос №2
Отдельной цифрой, например 2, обозначаются … микросхем
номера выводов
метки выводов
обозначения
напряжение питания
Вопрос №3
Память … информацию
хранит
отображает
обрабатывает
передает
Вопрос №4
Команда содержит сам операнд вместо адреса при … адресации
непосредственной
индексной
косвенной
Вопрос №5
Ввод-вывод на блок-схеме обозначается в виде
параллелограмма
о
600 руб.
Контрольная по дисциплине: Программно-аппаратные средства обеспечения информационной безопасности. Вариант 12
xtrail
: 27 апреля 2025
Вариант 12
Целью выполнения курсовой работы является проведение исследований на одну из тем (приложение А), для реализации средств защиты на предполагаемом предприятии.
Предприятие:
- является филиалом крупной Компании А;
- предприятие содержит локальную сеть, состоящую из N компьютеров и M серверов;
Развертывание работы межсетевых экранов (программных и/или аппаратных) в локальной сети предприятия.
Количество компьютеров: N = 167;
Количество серверов: M = 5.
Оглавление
Введение 3
1 Информаци
1000 руб.