Экзаменационная работа по дисциплине: Теория сложностей вычислительных процессов и структур. Билет 12

Состав работы

material.view.file_icon F3633C74-67B3-404C-8A2E-3607A76AB18C.docx
Работа представляет собой файл, который можно открыть в программе:
  • Microsoft Word

Описание

Билет №12

1. С помощью алгоритма Форда-Беллмана найти кратчайшие расстояния от вершины 5 (нумерация вершин начинается с 0) до всех остальных вершин связного взвешенного неориентированного графа, имеющего 6 вершин. Граф задан матрицей смежности, (0 означает, что соответствующей дуги нет).
(0 6 0 5 2 7)
(6 0 4 1 3 2)
(0 4 0 7 4 3)
(5 1 7 0 6 1)
(2 3 4 6 0 0)
(7 2 3 1 0 0)

2. Имеется склад, на котором присутствует некоторый ассортимент товаров. Запас каждого товара неограничен. У каждого товара своя стоимость сi и масса mi. Методом динамического программирования сформировать такой набор товаров с максимальной стоимостью, чтобы его суммарная масса не превышала заданную грузоподъемность М.
Номер товара, i mi сi M
1 4 24 19
2 2 12 
3 5 21 52

Дополнительная информация

Оценка - отлично!
Год сдачи: 2025 г.
Преподаватель: Галкина М.Ю.
Помогу с другим вариантом.

Выполняю работы на заказ по различным дисциплинам.
E-mail: LRV967@ya.ru
Экзаменационная работа по дисциплине: Теория сложностей вычислительных процессов и структур, билет №12
Билет №12 (Все задачи решаются «вручную») 1. По алгоритму Дейкстры найти кратчайшее расстояние от вершины 1 до всех остальных вершин связного взвешенного неориентированного графа, имеющего 5 вершин (нумерация вершин начинается с 0). Граф задан матрицей весов дуг, соединяющих всевозможные пары вершин. 2. Имеется склад, на котором присутствует некоторый ассортимент товаров. Запас каждого товара неограничен. У каждого товара своя стоимость Ci и масса mi. Методом динамического программирования сформ
User selkup : 16 марта 2017
250 руб.
Экзаменационная работа по дисциплине: Теория сложностей вычислительных процессов и структур. Билет №12.
Билет №12 (РЕШЕНИЕ) 1) По алгоритму Дейкстры найти кратчайшее расстояние от вершины 1 до всех остальных вершин связного взвешенного неориентированного графа, имеющего 5 вершин (нумерация вершин начинается с 0). Граф задан матрицей весов дуг, соединяющих всевозможные пары вершин. 2) Имеется склад, на котором присутствует некоторый ассортимент товаров. Запас каждого товара неограничен. У каждого товара своя стоимость Ci и масса mi. Методом динамического программирования сформировать такой набор
User freelancer : 25 августа 2016
80 руб.
Экзаменационная работа по дисциплине: Теория сложностей вычислительных процессов и структур. Билет №12.
Экзаменационная работа по дисциплине: "Теория сложностей вычислительных процессов и структур". Билет № 12
Билет №12 (Все задачи решаются «вручную») 1. По алгоритму Дейкстры найти кратчайшее расстояние от вершины 1 до всех остальных вершин связного взвешенного неориентированного графа, имеющего 5 вершин (нумерация вершин начинается с 0). Граф задан матрицей весов дуг, соединяющих всевозможные пары вершин. 2. Имеется склад, на котором присутствует некоторый ассортимент товаров. Запас каждого товара неограничен. У каждого товара своя стоимость Ci и масса mi. Методом динамического программирования с
User xtrail : 22 апреля 2013
350 руб.
Теория сложностей вычислительных процессов и структур. Билет №12
Билет No12 С помощью алгоритма Форда-Беллмана найти кратчайшие расстояния от вершины 5 (нумерация вершин начинается с 0) до всех остальных вершин связного взвешенного неориентированного графа, имеющего 6 вершин. Граф задан матрицей смежности, (0 означает, что соответствующей дуги нет). ((0&6&0&5&2&7@6&0&4&1&3&2@0&4&0&7&4&3@5&1&7&0&6&1@2&3&4&6&0&0@7&2&3&1&0&0)) Имеется склад, на котором присутствует некоторый ассортимент товаров. Запас каждого товара неограничен. У каждого товара своя стоимост
User IT-STUDHELP : 7 июня 2020
450 руб.
Теория сложностей вычислительных процессов и структур. Билет №12 promo
Теория сложностей вычислительных процессов и структур. Экзамен. Билет 12
Билет №12. (Все задачи решаются «вручную») 1.По алгоритму Дейкстры найти кратчайшее расстояние от вершины 1 до всех остальных вершин связного взвешенного неориентированного графа, имеющего 5 вершин (нумерация вершин начинается с 0). Граф задан матрицей весов дуг, соединяющих всевозможные пары вершин. {0 0 34 7 0} и тд.. 2.Имеется склад, на котором присутствует некоторый ассортимент товаров. Запас каждого товара неограничен. У каждого товара своя стоимость Ci и масса mi. Методом динамическо
User uberdeal789 : 23 мая 2015
50 руб.
Теория сложностей вычислительных процессов и структур. Экзамен. Билет 12
Экзамен По дисциплине: Теория сложности вычислительных процессов и структур. Билет №12.
Билет №12 1. С помощью алгоритма Форда-Беллмана найти кратчайшие расстояния от вершины 5 (нумерация вершин начинается с 0) до всех остальных вершин связного взвешенного неориентированного графа, имеющего 6 вершин. Граф задан матрицей смежности, (0 означает, что соответствующей дуги нет). 2. Имеется склад, на котором присутствует некоторый ассортимент товаров. Запас каждого товара неограничен. У каждого товара своя стоимость сi и масса mi. Методом динамического программирования сформировать так
User teacher-sib : 23 февраля 2025
300 руб.
Экзамен По дисциплине: Теория сложности вычислительных процессов и структур. Билет №12. promo
Теория сложности вычислительных процессов и структур (ДВ 2.1) Билет №12.
Уважаемый студент, дистанционного обучения, Оценена Ваша работа по предмету: Теория сложности вычислительных процессов и структур (ДВ 2.1) Вид работы: Экзамен Оценка:Отлично Дата оценки: 19.01.2019 Рецензия:Уважаемая , замечаний нет. Галкина Марина Юрьевна
User MayaMy : 23 февраля 2019
300 руб.
Теория сложности вычислительных процессов и структур (ДВ 2.1) Билет №12.
Экзаменационная работа по дисциплине: Теория сложности вычислительных процессов и структур. Билет №5
Билет №5 1. Оптимальным образом расставить скобки при перемножении следующих матриц: M1[3x5], M2[5x2], M3[2x7], M4[7x4], M5[4x5]. 2. С помощью алгоритма Дейкстры найти кратчайшие расстояния от вершины 0 (нумерация вершин начинается с 0) до всех остальных вершин связного взвешенного неориентированного графа, имеющего 6 вершин. Граф задан матрицей смежности, (0 означает, что соответствующей дуги нет). (0 4 0 7 6 4) (4 0 1 3 2 7) (0 1 0 5 4 1) (7 3 5 0 3 7) (6 2 4 3 0
User Учеба "Под ключ" : 25 января 2026
500 руб.
promo
Термодинамика и теплопередача СамГУПС 2012 Задача 32 Вариант 6
По данным тепловых измерений тепломером средний удельный тепловой поток через ограждение изотермического вагона при температуре наружного воздуха tн и температуре воздуха в вагоне tв составил q. На сколько процентов изменится количество тепла, поступающего в вагон за счет теплопередачи через ограждения, если при прочих равных условиях на его поверхность наложить дополнительный слой изоляции из пиатерма толщиной δ = 30 мм с коэффициентом теплопроводности λ = 0,036 Вт/(м·К)?
User Z24 : 12 ноября 2025
150 руб.
Термодинамика и теплопередача СамГУПС 2012 Задача 32 Вариант 6
Проект развития системы малого предпринимательства на территории ЦАО г. Москвы
ОГЛАВЛЕНИЕ Введение Глава 1. Теоретические основы малого предпринимательства 1.1 Малое предпринимательство: понятие, сущность, значение 1.2 Управление развитием малого предпринимательства: субъекты, направления, механизмы Глава 2. Деятельность префектуры ЦАО: ситуация и проблемы 2.1 Анализ деятельности префектуры ЦАО в области развития системы малого предпринимательства 2.2 Основные проблемы развития малого предпринимательства в ЦАО г. Москвы Глава 3. Проект развития системы малого предпр
User Slolka : 2 ноября 2013
10 руб.
Оптические средства сопряжения. Вариант 27
Оптические средства сопряжения Задача 1 Используя данные реальных модулей SFP/XFP , приведённые в табл.1.1, оценить возможность их применения на волоконно-оптических линиях различной протяженности (табл.1.2), представляющих собой волокна стандарта G.652 A, B, C, D (SMF). Оценку применимости модулей на соответствующих волокнах подтвердить расчётами энергетических параметров дисперсионных искажений. Значения затухания и дисперсии выбрать по рис.1.1. Оценить возможную перегрузку приёмника. Задача
User Александр199 : 12 марта 2020
350 руб.
Оптические средства сопряжения. Вариант 27
Шлицевое соединение. Задание 81 - Вариант 28
С.К. Боголюбов. Индивидуальные задания по курсу черчения. Шлицевое соединение. Задание 81 - Вариант 28 Выполнить чертежи каждой детали (1 и 2) в отдельности, нанести обозначения, учитывая требования ГОСТ 2.409-74. В состав работы входит: Чертежи деталей; Сборочный чертеж; 3D модели. Выполнено в программе Компас + чертежи в PDF.
User .Инженер. : 20 января 2026
150 руб.
Шлицевое соединение. Задание 81 - Вариант 28 promo
up Наверх