Экзаменационная работа по дисциплине: Теория сложностей вычислительных процессов и структур. Билет 12

Состав работы

material.view.file_icon F3633C74-67B3-404C-8A2E-3607A76AB18C.docx
Работа представляет собой файл, который можно открыть в программе:
  • Microsoft Word

Описание

Билет №12

1. С помощью алгоритма Форда-Беллмана найти кратчайшие расстояния от вершины 5 (нумерация вершин начинается с 0) до всех остальных вершин связного взвешенного неориентированного графа, имеющего 6 вершин. Граф задан матрицей смежности, (0 означает, что соответствующей дуги нет).
(0 6 0 5 2 7)
(6 0 4 1 3 2)
(0 4 0 7 4 3)
(5 1 7 0 6 1)
(2 3 4 6 0 0)
(7 2 3 1 0 0)

2. Имеется склад, на котором присутствует некоторый ассортимент товаров. Запас каждого товара неограничен. У каждого товара своя стоимость сi и масса mi. Методом динамического программирования сформировать такой набор товаров с максимальной стоимостью, чтобы его суммарная масса не превышала заданную грузоподъемность М.
Номер товара, i mi сi M
1 4 24 19
2 2 12 
3 5 21 52

Дополнительная информация

Оценка - отлично!
Год сдачи: 2025 г.
Преподаватель: Галкина М.Ю.
Помогу с другим вариантом.

Выполняю работы на заказ по различным дисциплинам.
E-mail: LRV967@ya.ru
Экзаменационная работа по дисциплине: Теория сложностей вычислительных процессов и структур, билет №12
Билет №12 (Все задачи решаются «вручную») 1. По алгоритму Дейкстры найти кратчайшее расстояние от вершины 1 до всех остальных вершин связного взвешенного неориентированного графа, имеющего 5 вершин (нумерация вершин начинается с 0). Граф задан матрицей весов дуг, соединяющих всевозможные пары вершин. 2. Имеется склад, на котором присутствует некоторый ассортимент товаров. Запас каждого товара неограничен. У каждого товара своя стоимость Ci и масса mi. Методом динамического программирования сформ
User selkup : 16 марта 2017
250 руб.
Экзаменационная работа по дисциплине: Теория сложностей вычислительных процессов и структур. Билет №12.
Билет №12 (РЕШЕНИЕ) 1) По алгоритму Дейкстры найти кратчайшее расстояние от вершины 1 до всех остальных вершин связного взвешенного неориентированного графа, имеющего 5 вершин (нумерация вершин начинается с 0). Граф задан матрицей весов дуг, соединяющих всевозможные пары вершин. 2) Имеется склад, на котором присутствует некоторый ассортимент товаров. Запас каждого товара неограничен. У каждого товара своя стоимость Ci и масса mi. Методом динамического программирования сформировать такой набор
User freelancer : 25 августа 2016
80 руб.
Экзаменационная работа по дисциплине: Теория сложностей вычислительных процессов и структур. Билет №12.
Экзаменационная работа по дисциплине: "Теория сложностей вычислительных процессов и структур". Билет № 12
Билет №12 (Все задачи решаются «вручную») 1. По алгоритму Дейкстры найти кратчайшее расстояние от вершины 1 до всех остальных вершин связного взвешенного неориентированного графа, имеющего 5 вершин (нумерация вершин начинается с 0). Граф задан матрицей весов дуг, соединяющих всевозможные пары вершин. 2. Имеется склад, на котором присутствует некоторый ассортимент товаров. Запас каждого товара неограничен. У каждого товара своя стоимость Ci и масса mi. Методом динамического программирования с
User xtrail : 22 апреля 2013
350 руб.
Теория сложностей вычислительных процессов и структур. Билет №12
Билет No12 С помощью алгоритма Форда-Беллмана найти кратчайшие расстояния от вершины 5 (нумерация вершин начинается с 0) до всех остальных вершин связного взвешенного неориентированного графа, имеющего 6 вершин. Граф задан матрицей смежности, (0 означает, что соответствующей дуги нет). ((0&6&0&5&2&7@6&0&4&1&3&2@0&4&0&7&4&3@5&1&7&0&6&1@2&3&4&6&0&0@7&2&3&1&0&0)) Имеется склад, на котором присутствует некоторый ассортимент товаров. Запас каждого товара неограничен. У каждого товара своя стоимост
User IT-STUDHELP : 7 июня 2020
450 руб.
Теория сложностей вычислительных процессов и структур. Билет №12 promo
Теория сложностей вычислительных процессов и структур. Экзамен. Билет 12
Билет №12. (Все задачи решаются «вручную») 1.По алгоритму Дейкстры найти кратчайшее расстояние от вершины 1 до всех остальных вершин связного взвешенного неориентированного графа, имеющего 5 вершин (нумерация вершин начинается с 0). Граф задан матрицей весов дуг, соединяющих всевозможные пары вершин. {0 0 34 7 0} и тд.. 2.Имеется склад, на котором присутствует некоторый ассортимент товаров. Запас каждого товара неограничен. У каждого товара своя стоимость Ci и масса mi. Методом динамическо
User uberdeal789 : 23 мая 2015
50 руб.
Теория сложностей вычислительных процессов и структур. Экзамен. Билет 12
Экзамен По дисциплине: Теория сложности вычислительных процессов и структур. Билет №12.
Билет №12 1. С помощью алгоритма Форда-Беллмана найти кратчайшие расстояния от вершины 5 (нумерация вершин начинается с 0) до всех остальных вершин связного взвешенного неориентированного графа, имеющего 6 вершин. Граф задан матрицей смежности, (0 означает, что соответствующей дуги нет). 2. Имеется склад, на котором присутствует некоторый ассортимент товаров. Запас каждого товара неограничен. У каждого товара своя стоимость сi и масса mi. Методом динамического программирования сформировать так
User teacher-sib : 23 февраля 2025
300 руб.
Экзамен По дисциплине: Теория сложности вычислительных процессов и структур. Билет №12. promo
Теория сложности вычислительных процессов и структур (ДВ 2.1) Билет №12.
Уважаемый студент, дистанционного обучения, Оценена Ваша работа по предмету: Теория сложности вычислительных процессов и структур (ДВ 2.1) Вид работы: Экзамен Оценка:Отлично Дата оценки: 19.01.2019 Рецензия:Уважаемая , замечаний нет. Галкина Марина Юрьевна
User MayaMy : 23 февраля 2019
300 руб.
Теория сложности вычислительных процессов и структур (ДВ 2.1) Билет №12.
Экзаменационная работа по дисциплине: Теория сложности вычислительных процессов и структур. Билет №5
Билет №5 1. Оптимальным образом расставить скобки при перемножении следующих матриц: M1[3x5], M2[5x2], M3[2x7], M4[7x4], M5[4x5]. 2. С помощью алгоритма Дейкстры найти кратчайшие расстояния от вершины 0 (нумерация вершин начинается с 0) до всех остальных вершин связного взвешенного неориентированного графа, имеющего 6 вершин. Граф задан матрицей смежности, (0 означает, что соответствующей дуги нет). (0 4 0 7 6 4) (4 0 1 3 2 7) (0 1 0 5 4 1) (7 3 5 0 3 7) (6 2 4 3 0
User Учеба "Под ключ" : 25 января 2026
500 руб.
promo
Электромагнитные поля и волны, Экзамен, 9-й билет
Теоретический вопрос: Элементарный магнитный излучатель. Принцип перестановочной двойственности. Пример перехода от полей, которые создает элементарный электрический излучатель, к полям, которые создает элементарный магнитный излучатель. Задача №1 Волна на частоте ГГц имеет длину волны в волноводе в два раза больше длины волны в свободном пространстве. Определить: 1 Радиус волновода; 2 Длину волны в волноводе; 3 Волновое сопротивление волновода; 4 Отношение фазовой скорости к скорости света.
User Decoy2k : 6 октября 2014
150 руб.
Лабораторная работа по дисциплине: Методы машинного обучения. Вариант 6
6. Y=sin^2X+log_2X. Диапазон X: 0.1-10. Контрольное значение для прогноза X=9.35. Лабораторная работа: Основы работы с пакетом R Общее задание является единым для всех вариантов, вариант влияет только на тип входных данных и способ ввода. Способов ввода будет 2: 1) Создать таблицу с данными и сохранить её в текстовом файле, данные считывать из этого файла 2) Данные задаются при помощи функции При формировании данных необходимо создать не менее 30 пар значений. Необходимо написать скрипт, к
User IT-STUDHELP : 16 мая 2022
500 руб.
promo
Спроектировать и рассчитать одноступенчатый цилиндрический редуктор
Содержание Введение 1 Выбор электродвигателя. Определение основных кинематических и энергетических параметров редуктора 2 Расчет закрытой передачи 4 Расчёт шестерни открытой передачи 14 Проектный расчет валов и подбор подшипников 16 Проверочный расчет валов на выносливость 20 Определение коэффициента запаса усталостной прочности 22 Проверочный расчет подшипников 25 Конструирование элементов корпуса 27 Смазка зубчатой передачи 28 Расчет шпонок 30 Список литературы 32 Редуктором называют механизм
User Рики-Тики-Та : 23 октября 2010
55 руб.
up Наверх