Контрольная работа по дисциплине: Дискретная математика. Вариант 07
Состав работы
|
|
Работа представляет собой файл, который можно открыть в программе:
- Microsoft Word
Описание
Вариант 07
№1 Доказать равенства, используя свойства операций над множествами и определения операций. Проиллюстрировать при помощи диаграмм Эйлера-Венна.
а) (A/C)u(B/C)=(AuB)/C
б) (A/B)xC=(AxC)/(BxC).
№2 Даны два конечных множества: А={a,b,c}, B={1,2,3,4}; бинарные отношения P1 c AxB, P2 c B^(2). Изобразить P1, P2 графически. Найти P = (P2*P1)^(–1). Выписать области определения и области значений всех трех отношений: P1, P2, Р. Построить матрицу [P2], проверить с ее помощью, является ли отношение P2 рефлексивным, симметричным, антисимметричным, транзитивным.P1 = {(a,1),(b,3),(b,1),(b,4),(c,3),(c,2)}; P2 = {(1,3),(1,4),(2,2),(3,3),(4,3),(4,4)}.
№3 Задано бинарное отношение P c R^(2); найти его область определения и область значений. Проверить по определению, является ли Pрефлексивным, симметричным, антисимметричным, транзитивным., P = {(x,y) | x^(2) + y^(2) = 4}.
№4 Доказать утверждение методом математической индукции:
(1-1/4)*(1-1/9)*(1-1/16)...*(1-1/n^(2)) = (n+1)/2n для n >= 2.
№5 Восемь студентов должны сдавать зачет по пяти предметам: физике, архитектуре ЭВМ, математическому анализу, английскому языку и истории. Все зачеты назначены на одно время и каждый может сдавать только один зачет, поэтому студентам нужно распределиться на группы. Сколькими способами это можно сделать? Сколькими способами они могут разместиться после зачета за двумя совершенно одинаковыми столиками (не менее чем по одному) для того, чтобы отпраздновать результаты?
№6 Сколько существует положительных трехзначных чисел: а) не делящихся ни на одно из чисел 5, 6, 16? б) делящихся ровно на одно из этих трех чисел?
№7 Найти коэффициенты при a=x^(4)*y*z^(3), b=x*y^(4)*z, c=y^(2)*z^(4) в разложении (3*x^(2)+5*y+2*z)^(6).
№8 Найти последовательность {an}, удовлетворяющую рекуррентному соотношению 3*a_n+2 – 8*a_n+1 + 5*a_n = 0 и начальным условиям a1=10, a2=20.
№9 Орграф задан матрицей смежности. Необходимо:
а) нарисовать граф;
б) выделить компоненты сильной связности;
в) заменить все дуги ребрами и в полученном неориентированном графе найти эйлерову цепь (или цикл).
(1 0 0 1 1 0)
(0 0 1 0 0 0)
(0 1 1 0 0 0)
(1 0 0 0 1 0)
(0 0 0 1 0 0)
(1 0 1 0 1 1)
№10 Взвешенный граф задан матрицей длин дуг. Нарисовать граф. Найти:а) остовное дерево минимального веса;б) кратчайшее расстояние от вершины v3 до остальных вершин графа, используя алгоритм Дейкстры.
[oo 5 2 2 oo 3]
[5 oo oo 3 4 oo]
[2 oo oo 6 oo 4]
[2 3 6 oo 5 oo]
[oo 4 oo 5 oo 5 oo]
[3 oo 4 oo 2 oo]
№1 Доказать равенства, используя свойства операций над множествами и определения операций. Проиллюстрировать при помощи диаграмм Эйлера-Венна.
а) (A/C)u(B/C)=(AuB)/C
б) (A/B)xC=(AxC)/(BxC).
№2 Даны два конечных множества: А={a,b,c}, B={1,2,3,4}; бинарные отношения P1 c AxB, P2 c B^(2). Изобразить P1, P2 графически. Найти P = (P2*P1)^(–1). Выписать области определения и области значений всех трех отношений: P1, P2, Р. Построить матрицу [P2], проверить с ее помощью, является ли отношение P2 рефлексивным, симметричным, антисимметричным, транзитивным.P1 = {(a,1),(b,3),(b,1),(b,4),(c,3),(c,2)}; P2 = {(1,3),(1,4),(2,2),(3,3),(4,3),(4,4)}.
№3 Задано бинарное отношение P c R^(2); найти его область определения и область значений. Проверить по определению, является ли Pрефлексивным, симметричным, антисимметричным, транзитивным., P = {(x,y) | x^(2) + y^(2) = 4}.
№4 Доказать утверждение методом математической индукции:
(1-1/4)*(1-1/9)*(1-1/16)...*(1-1/n^(2)) = (n+1)/2n для n >= 2.
№5 Восемь студентов должны сдавать зачет по пяти предметам: физике, архитектуре ЭВМ, математическому анализу, английскому языку и истории. Все зачеты назначены на одно время и каждый может сдавать только один зачет, поэтому студентам нужно распределиться на группы. Сколькими способами это можно сделать? Сколькими способами они могут разместиться после зачета за двумя совершенно одинаковыми столиками (не менее чем по одному) для того, чтобы отпраздновать результаты?
№6 Сколько существует положительных трехзначных чисел: а) не делящихся ни на одно из чисел 5, 6, 16? б) делящихся ровно на одно из этих трех чисел?
№7 Найти коэффициенты при a=x^(4)*y*z^(3), b=x*y^(4)*z, c=y^(2)*z^(4) в разложении (3*x^(2)+5*y+2*z)^(6).
№8 Найти последовательность {an}, удовлетворяющую рекуррентному соотношению 3*a_n+2 – 8*a_n+1 + 5*a_n = 0 и начальным условиям a1=10, a2=20.
№9 Орграф задан матрицей смежности. Необходимо:
а) нарисовать граф;
б) выделить компоненты сильной связности;
в) заменить все дуги ребрами и в полученном неориентированном графе найти эйлерову цепь (или цикл).
(1 0 0 1 1 0)
(0 0 1 0 0 0)
(0 1 1 0 0 0)
(1 0 0 0 1 0)
(0 0 0 1 0 0)
(1 0 1 0 1 1)
№10 Взвешенный граф задан матрицей длин дуг. Нарисовать граф. Найти:а) остовное дерево минимального веса;б) кратчайшее расстояние от вершины v3 до остальных вершин графа, используя алгоритм Дейкстры.
[oo 5 2 2 oo 3]
[5 oo oo 3 4 oo]
[2 oo oo 6 oo 4]
[2 3 6 oo 5 oo]
[oo 4 oo 5 oo 5 oo]
[3 oo 4 oo 2 oo]
Дополнительная информация
Зачет без замечаний!
Год сдачи: 2025 г.
Преподаватель: Новожилов Д.И.
Помогу с другим вариантом.
Выполняю работы на заказ по различным дисциплинам.
E-mail: LRV967@ya.ru
Год сдачи: 2025 г.
Преподаватель: Новожилов Д.И.
Помогу с другим вариантом.
Выполняю работы на заказ по различным дисциплинам.
E-mail: LRV967@ya.ru
Похожие материалы
Контрольная работа по дисциплине: Дискретная математика. Вариант: 07
novg
: 13 февраля 2012
Задача 1
Доказать равенства, используя свойства операций над множествами и определения операций. Проиллюстрировать при помощи диаграмм
Эйлера-Венна.
Задача 2
Даны два конечных множества: А={a,b,c}, B={1,2,3,4}; бинарные отношения P1 AB, P2 B2. Изобразить P1, P2 графически. Найти P = (P2P1)–1. Выписать области определения и области значений всех трех отношений: P1, P2, Р. Построить матрицу [P2], проверить с ее помощью, является ли
отношение P2 рефлексивным, симметричным, антисимметричным, тр
Дискретная математика, контрольная работа, вариант 07
Larina385
: 18 ноября 2015
Задача №1:
Задано универсальное множество U и множества A,B,C,D. Найти результаты действий a) - д) и каждое действие проиллюстрировать с помощью диаграммы Эйлера-Венна.
U= {10,11,12,13,14} A={10,11,12}; B= {12,13,14}; C= {10,14}; D={12}
Задача №2:
Ввести необходимые элементарные высказывания и записать логической формулой следующее предложение: “Если А знаком с Б, и Б знаком с В, то либо А знаком с В, либо А не знаком с В”.
Задача №3:
Для булевой функции найти методом преобразования
200 руб.
Контрольная работа по дисциплине: Дискретная математика
Максим400
: 4 февраля 2021
Контрольная работа
по дисциплине: Дискретная математика
Вариант 3
I. Задано универсальное множество U и множества A,B,C,D. Найти результаты действий а) – д) и каждое действие проиллюстрировать с помощью диаграммы Эйлера-Вейна.
II. Ввести необходимые элементарные высказывания и записать логической формулой следующие предложение.
«Если на небе светит солнце, и не идет дождь, то погода подходит для пикника»
III. Для булевой функции f (x,y,z) найти методом преобразования минимальную ДНФ. По таблиц
100 руб.
Контрольная работа по дисциплине: «Дискретная математика»
Мария114
: 24 мая 2017
1. Задано универсальное множество и множества Найти результаты действий a) - д) и каждое действие проиллюстрировать с помощью диаграммы Эйлера-Венна.
2. Ввести необходимые элементарные высказывания и записать логической формулой следующее предложение.
3. Для булевой функции найти методом преобразования минимальную ДНФ. По таблице истинности построить СКНФ. По минимальной ДНФ построить релейно-контактную схему.
4. Орграф задан своей матрицей смежности. Следует:
а) нарисовать орграф;
б) найти
100 руб.
Контрольная работа по дисциплине: "Дискретная математика"
Ivanych
: 19 марта 2017
Вариант №3
Задача №1
Задано универсальное множество U и множества A, B, C, D. Найти результаты действий а) -д) и каждое действие проиллюстрировать с помощью диаграмм Эйлера-Венна
Задача №2
Ввести необходимые элементарные высказывания и записать логической формулой следующее предложение: «Если на небе светит солнце, и не идет дождь, то погода подходит для пикника».
200 руб.
Контрольная работа по дисциплине: Дискретная математика
BuKToP89
: 31 марта 2016
Вариант: 2
I. Задано универсальное множество U и множества A, B, C, D. Найти результаты действий a) - д) и каждое действие проиллюстрировать с помощью диаграммы Эйлера-Венна.
II. Ввести необходимые элементарные высказывания и записать логической формулой следующее предложение.
“Если вопрос на экзамене сформулирован корректно, а студент не знает ответа, то экзаменатор недоволен”.
III. Для булевой функции найти методом преобразования минимальную ДНФ. По таблице истинности построить СКНФ. По миним
80 руб.
Контрольная работа по дисциплине: Дискретная математика
pvv1962
: 4 апреля 2015
I. Задано универсальное множество U и множества A,B,C,D. Найти результаты действий а) – д) и каждое действие проиллюстрировать с помощью диаграммы Эйлера-Вейна.
II. Ввести необходимые элементарные высказывания и записать логической формулой следующие предложение.
“Если на небе светит солнце, и не идет дождь, то погода подходит для пикника”
III. Для булевой функции f(x,y,z) найти методом преобразования минимальную
ДНФ. По таблице истинности построить СКНФ. По минимальной ДНФ
75 руб.
Контрольная работа по дисциплине: " Дискретная математика"
marvredina
: 9 ноября 2014
I. Задано универсальное множество и множества Найти результаты действий a) - д) и каждое действие проиллюстрировать с помощью диаграммы Эйлера-Венна.
II. Ввести необходимые элементарные высказывания и записать логической формулой следующее предложение.
III. Для булевой функции найти методом преобразования минимальную ДНФ. По таблице истинности построить СКНФ. По минимальной ДНФ построить релейно-контактную схему.
IV. Орграф задан своей матрицей смежности. Следует:
а) нарисовать орграф;
б) н
50 руб.
Другие работы
Термодинамика и теплопередача ТЕХНИЧЕСКАЯ ТЕРМОДИНАМИКА ИрГУПС 2015 Задача 10 Вариант 4
Z24
: 3 декабря 2025
Определить степень сжатия, давление и температуру в переходных точках идеального цикла поршневого двигателя внутреннего сгорания с подводом теплоты при постоянном объеме, а также термический КПД, удельные значения (на 1 кг рабочего тела) полезной работы, подведенной и отведенной теплоты, если известно, что абсолютное давление рабочего тела в начале сжатия р1=95 кПа, а в конце сжатия — р2. Отношение давлений рабочего тела в процессе подведения теплоты λ. Температура в начале процесса сжатия t1=47
200 руб.
Теплотехника КНИТУ Задача ТП-1 Вариант 02
Z24
: 18 января 2026
Определить плотность теплового потока q, передаваемого теплопроводностью:
1) через однослойную плоскую металлическую стенку толщиной δc;
2) через двухслойную плоскую стенку: первая стенка покрыта плоским слоем изоляции толщиной δи.
Температуры внешних поверхностей tc1 и tc2 в обоих случаях одинаковы.
150 руб.
Диплом проект реконструкции стана 350
ni.tanya
: 13 декабря 2008
ПРОЕКТ РЕКОНСТРУКЦИИ СТАНА 350 С ЦЕЛЬЮ ПОЛУЧЕНИЯ ЗАДАННЫХ МЕХАНИЧЕСКИХ СВОЙСТВ СОРТОВОГО ПРОКАТА В УСЛОВИЯХ СПЦ ОАО «СЕВЕРСТАЛЬ»
В результате проводимого мероприятия расширяется сортамент стана, а, следовательно, расширяется стол заказов, снижается потребность цеха в заготовках марки 35ГС. Прокатка с термомеханическим упрочнением рядовой марки стали снижает расход металла по с равнению с легированной сталью. В результате реконструкции станет возможным получение проката из стали 3пс с теми же ме
Экзамен по теории связи. Билет №16
Vokut
: 4 января 2017
1. Распределение огибающей и фазы суммы гармонического сигнала и узкополосного гауссовского случайного процесса.
2. Простейшие корректирующие коды (с проверкой на четность, с постоянным весом - 3:4).
120 руб.