Теория вероятности и математическая статистика
Состав работы
|
|
|
|
|
|
|
|
Работа представляет собой zip архив с файлами (распаковать онлайн), которые открываются в программах:
- Microsoft Word
Описание
Введение.
Теория вероятности возникла как наука из убеждения, что в основе массовых случайных событий лежат детерминированные закономерности. Теория вероятности изучает данные закономерности.
Например: определить однозначно результат выпадения “орла” или “решки” в результате подбрасывания монеты нельзя, но при многократном подбрасывании выпадает примерно одинаковое число “орлов” и “решек”.
Испытанием называется реализация определенного комплекса условий, который может воспроизводиться неограниченное число раз. При этом комплекс условий включает в себя случайные факторы, реализация которого в каждом испытании приводит к неоднозначности исхода испытания.
Например: испытание - подбрасывание монеты.
Результатом испытания является событие. Событие бывает:
Достоверное (всегда происходит в результате испытания);
Невозможное (никогда не происходит);
Случайное (может произойти или не произойти в результате испытания).
Теория вероятности возникла как наука из убеждения, что в основе массовых случайных событий лежат детерминированные закономерности. Теория вероятности изучает данные закономерности.
Например: определить однозначно результат выпадения “орла” или “решки” в результате подбрасывания монеты нельзя, но при многократном подбрасывании выпадает примерно одинаковое число “орлов” и “решек”.
Испытанием называется реализация определенного комплекса условий, который может воспроизводиться неограниченное число раз. При этом комплекс условий включает в себя случайные факторы, реализация которого в каждом испытании приводит к неоднозначности исхода испытания.
Например: испытание - подбрасывание монеты.
Результатом испытания является событие. Событие бывает:
Достоверное (всегда происходит в результате испытания);
Невозможное (никогда не происходит);
Случайное (может произойти или не произойти в результате испытания).
Похожие материалы
Теория вероятностей и математическая статистика
Dirol340
: 11 декабря 2022
Задание 1.
Сколько 4-х буквенных слов можно составить из букв слова УКУС?
Решение: Переставить буквы в слове можно 4! Способами. В слове 2 одинаковые буквы: У – две буквы. Если менять местами эти буквы в конкретной расстановке, то слова будут получаться одинаковые. Следовательно, общее число слов, составленных перестановкой букв из слова УКУС будет равно:
Задание 2.
В автопарке имеются автомобили трех марок, всех поровну. Автомобиль первой марки исправен с вероятностью 0,8, второй марки с
250 руб.
Теория вероятностей и математическая статистика
viktoriya199000
: 16 мая 2022
Задача выполнена в ручную, на бумаге.
50 руб.
Теория вероятностей и математическая статистика
viktoriya199000
: 16 мая 2022
Задача выполнена в ручную, на бумаге
50 руб.
Теория вероятностей и математическая статистика
viktoriya199000
: 16 мая 2022
1. Используя метод максимального правдоподобия, оценить параметры и нормального распределения, если в результате n независимых испытаний случайная величина ξ приняла значения , ,... . Решить задачу с логарифмированием и без логарифмирования.
2. Методом максимального правдоподобия найдите оценку параметра θ, если плотность имеет вид
50 руб.
Теория вероятностей и математическая статистика.
IT-STUDHELP
: 22 ноября 2021
Задача 1.
В 2014 г. выборочное обследование распределения населения города по среднедушевому доходу показало, что 40% обследованных в выборке имеют среднедушевой доход не более 20 тыс. руб. В каких пределах находится доля населения, имеющего такой среднедушевой доход, во всей генеральной совокупности, если объем генеральной совокупности составляет 1000000 единиц, выборка не превышает 10% объема генеральной совокупности и осуществляется по методу случайного бесповторного отбора, а доверительная
600 руб.
Теория вероятностей и математическая статистика
svladislav987
: 9 ноября 2021
Задача No1 (Текст 1)
Вероятность соединения при телефонном вызове равна p. Какова вероятность, что соединение произойдёт только при k - ом вызове?
Дано:
p=0,7; k=5.
Задача No2 (Текст 3)
В одной урне K белых шаров и L чёрных шаров, а в другой – M белых и N чёрных. Из первой урны случайным образом вынимают P шаров и опускают во вторую урну. После этого из второй урны также случайно вынимают R шаров. Найти вероятность того, что все шары, вынутые из второй урны, белые.
Дано:
K=5; L=2; M=4; N=4; P=3
100 руб.
Теория вероятностей и математическая статистика
abuev
: 7 сентября 2021
Вопрос 1.
Термин «достоверное событие» используется для определения события...
Варианты ответа:
вероятность которого равна 1.
дополнение к которому пусто.
которое может произойти.
вероятность которого равна 0.
_______________________________________________________________________
Вопрос 2.
Вероятность того, произойдет одно из двух противоположных событий равна...
Варианты ответа:
сумме вероятностей этих событий.
произведению вероятностей этих событий .
0.
1.
___________________
400 руб.
Теория вероятностей и математическая статистика
GFox
: 20 июля 2021
Задача 1. Текст 2. Вероятность появления поломок на каждой из k соединительных линий равна p. Какова вероятность того, что хотя бы две линии исправны?
p = 0,8, k = 3. Задача 2. Текст 3. В одной урне K белых шаров и L чёрных шаров, а в другой – M белых и N чёрных. Из первой урны случайным образом вынимают P шаров и опускают во вторую урну. После этого из второй урны также случайно вынимают R шаров. Найти вероятность того, что все шары, вынутые из второй урны, белые. K = 5, L = 5, P = 2, M = 4, N
180 руб.
Другие работы
Лабораторная работа №2 "Исследование помехоустойчивых методов передачи и приема дискретных сигналов на автоматизированном рабочем месте СПИ" по дисциплине: Теория электрической связи
alexkrt
: 9 ноября 2012
Цель работы.
Исследование помехоустойчивости дискретных видов модуляции и способов приема сигналов в каналах связи с постоянными и переменными параметрами на ПЭВМ – автоматизированном рабочем месте кафедры для исследования систем передачи информации.
Данная работа имеет исследовательский характер и предоставляет студентам широкие возможности изменения параметров передаваемых сигналов, способов их приема, характеристик непрерывного и дискретного каналов связи.
50 руб.
Гидравлика РГОТУПС Задача 2.1 Вариант 5
Z24
: 16 октября 2025
Трапецеидальный канал с крутизной откосов m и коэффициентом шероховатости стенок n=0,025, имеющий ширину по дну b, проложен с уклоном дна i (рис. 7).
Требуется определить:
1. Глубину воды в канале при пропуске расхода Q.
2. Ширину канала по верху (по урезу воды) В.
3. Среднюю скорость движения воды V.
4. Состояние потока (спокойное или бурное).
5. Критический уклон дна канала iк.
6. Для найденного значения площади поперечного сечения найти гидравлически наивыгоднейшее сеч
400 руб.
Прямоугольное проецирование. Вариант 4
Laguz
: 29 марта 2024
Построить три вида модели, главный вид взять по стрелке А, проставить размеры
чертежи в 16 компасе, дополнительно сохранены в джпг.
Файлы компаса можно просматривать и сохранять в нужный формат бесплатной программой КОМПАС-3D Viewer.
Если есть какие-то вопросы или нужно другой вариант, пишите.
100 руб.
Гидравлика и гидромеханизация сельскохозяйственных процессов Задача 46
Z24
: 26 сентября 2025
Вода при температуре t = 15 ºС из резервуара А подается в резервуар В по трубопроводу, состоящему из двух участков длиной l1 = 10 м и l2 = 12 м диаметром d1 = 0,02 м и d2 = 0,008 м. Коэффициент гидравлического трения λ2 = 0,03. Коэффициент потерь при входе в трубу ξвх = 0,5. С другой стороны на том же уровне к резервуару А подсоединен внешний цилиндрический насадок (насадок Вентури) диаметром dн = 0,01 м и длиной lн = 5 dн. Коэффициент скорости насадка φн = 0,82.
Определить:
1. Напор Н1,
200 руб.