Контрольная работа по алгебре и геометрии
Состав работы
|
|
|
|
|
|
Работа представляет собой rar архив с файлами (распаковать онлайн), которые открываются в программах:
- Microsoft Word
Описание
Задача 1.
Дана система трех линейных уравнений. Найти решение ее двумя способами: методом Крамера и методом Гаусса.
Задача 2. Даны координаты вершин пирамиды А1А2А3А4. Найти:
1. длину ребра А1А2;
2. угол между ребрами А1А2 и А1А4;
3. площадь грани А1А2А3;
4. уравнение плоскости А1А2А3.
5. объём пирамиды А1А2А3А4.
Дана система трех линейных уравнений. Найти решение ее двумя способами: методом Крамера и методом Гаусса.
Задача 2. Даны координаты вершин пирамиды А1А2А3А4. Найти:
1. длину ребра А1А2;
2. угол между ребрами А1А2 и А1А4;
3. площадь грани А1А2А3;
4. уравнение плоскости А1А2А3.
5. объём пирамиды А1А2А3А4.
Дополнительная информация
Сибгути годдачи 2009 преподователь Агульник В.И.
оценка-зачет
оценка-зачет
Похожие материалы
Контрольная работа по алгебре и геометрии
Anfisa
: 29 июля 2012
Алгебра и геометрия, 1 семестр вариант №9
Дана система трёх линейных уравнений. Найти решение её методом Крамера
Даны координаты вершины пирамиды А1А2А3А4. Сделать чертеж и найти:
1. длину ребра А1А2.
2. угол между ребрами А1А2 и А1А4
3. площадь грани А1А2А3
4. уравнение прямой А1А2
5. уравнение плоскости А1А2А3
6. объем пирамиды А1А2А3А4
50 руб.
Контрольная работа по алгебре и геометриии. Вариант - 1
milisaKiko
: 2 мая 2025
Вариант No1
1. Решить систему уравнений методом Крамера и методом Гаусса
{(&2x-y+z=3@&x+2y+z=8@&-3x+5y-z=4)
2. Для данной матрицы найти обратную матрицу
(1&2&3@4&5&6@7&8&0)
3. Даны векторы
a ̄_1={2;⥄-3;⥄1},a ̄_2={-3;⥄⥄1;⥄2},⤢a ̄_3={1;⥄2;⥄3}.
Найти:
a) угол между векторами a ̄_1 и a ̄_2;
b) проекцию вектора a ̄_1 на вектор a ̄_2;
c) векторное произведение a ̄_1×a ̄_2;
d) площадь треугольника, построенного на векторах a ̄_1,a ̄_2
4. Даны координаты вершин треугольника
A(-4,0);B(-2,-2);C(2,2)
a
50 руб.
Контрольная работа по Алгебре и геометрии. Вариант №5
1309nikola
: 10 апреля 2016
Контрольная работа по Алгебре и геометрии.
Вариант №5\
Зачет 06.01.2016
60 руб.
Контрольная работа по алгебре и геометрии. Вариант №2
rahatlukum1
: 15 апреля 2014
Задача 1
Дана система трех линейных уравнений. Найти решение ее двумя способами: методом Крамера и методом Гаусса.
Задача 2
Даны координаты вершин пирамиды А1А2А3А4.
Найти: длину ребра А1А2; угол между ребрами А1А2 и А1А4; площадь грани А1А2А3;
уравнение плоскости А1А2А3; объём пирамиды А1А2А3А4.
А1 (1; 8; 2), А2 (5; 2; 6), А3 (0; -1; -2), А4 (-2; 3; -1).
50 руб.
Контрольная работа по алгебре и геометрии. Вариант № 8
verunchik
: 7 июля 2012
1. Дана система трех линейных уравнений. Найти решение ее двумя способами: методом Крамера и методом Гаусса.
2. Даны координаты вершин пирамиды А1А2А3А4.
А1 (10; 6; 6), А2 (-2; 8; 2), А3 (6; 8; 9), А4 (7; 10; 3).
100 руб.
Контрольная работа №1: Алгебра и геометрия. Вариант: №2
Antame
: 17 января 2019
ВАРИАНТ No2
Решить систему уравнений методом Крамера и методом Гаусса:
{█(4x-5y-2z=3@x+2y-z=3@2x-7y+2z=3)
Для данной матрицы найти обратную матрицу
A=((1&0&-1@2&1&0@-1&1&0))
3. Даны векторы (a_1 ) ⃗= {2;1;2},(〖 a〗_2 ) ⃗ = {-1;2;4}, (a_3 ) ⃗ = {1;2;3}
Найти:
a) угол между векторами (a_1 ) ⃗ и (〖 a〗_2 ) ⃗;
b) проекцию вектора (a_1 ) ⃗ на вектор (〖 a〗_2 ) ⃗;
c) векторное произведение (a_1 ) ⃗ × (〖 a〗_2 ) ⃗;
d) площадь треугольника, построенного на векторах (a_1 ) ⃗ , (〖 a〗_2 ) ⃗;
80 руб.
Контрольная работа №1. Алгебра и геометрия. Вариант № 08
zxcv123
: 1 февраля 2015
1.Дана система трех линейных уравнений. Найти решение ее двумя способами: методом Крамера и Гаусса.
2.Даны координаты вершин пирамиды А_1 А_2 А_3 А_4. Найти:
1. Длину ребра А_1 А_2
2. Угол между ребрами А_1 А_2 и А_1 А_4
3. Площадь грани А_1 А_2 А_3
4. Уравнение плоскости А_1 А_2 А_3
5. Объем пирамиды А_1 А_2 А_3 А_4
А_1 (10; 6; 6)
А_2 (-2; 8; 2)
А_3 (6; 8; 9)
А_4 (7; 10; 3)
120 руб.
Контрольная работа по алгебре и геометрии, вариант № 6, 2013г
DmitrTolmach
: 5 ноября 2014
Задача 1.
Дана система трех линейных уравнений. Найти решение ее двумя способами: методом Крамера и методом Гаусса.
Задача 2.
Даны координаты вершин пирамиды А1А2А3А4.
Найти:
1. длину ребра А1А2;
2. угол между ребрами А1А2 и А1А4;
3. площадь грани А1А2А3;
4. уравнение плоскости А1А2А3.
5. объём пирамиды А1А2А3А4.
2.10. А1 ( 6; 6; 5), А2 ( 4; 9; 5), А3 ( 4; 6; 11), А4 ( 6; 9; 3).
100 руб.
Другие работы
Экономика Японии: проблемы и перспективы развития в мировом хозяйстве
alfFRED
: 10 сентября 2013
Содержание
Введение
Структура экономики Японии
Анализ динамики экономики Японии
Особенности экономики Японии
Внешнеэкономическая стратегия Японии
Российско-японское торгово-экономическое сотрудничество
Заключение
Список литературы
Введение
В последние десятилетия Япония выступает одной из ведущих держав, является второй страной мира по величине основных макропоказателей. Ее экономический потенциал равен трети американского, но превосходит германский. Население Японии составляет 2% обще
5 руб.
МИП - ЛАБОРАТОРНАЯ РАБОТА № 2 (часть 3) Личностный опросник Г. Айзенка (EPI)
aly1
: 22 декабря 2016
Цель: опросник EPI направлен на выявление экстраверсии-интроверсии личности, а также на оценку эмоциональной стабильности-нестабильности (нейротизма).
Материал и оборудование: текст опросника, лист для фиксации ответов, ключ, ручка.
Процедура проведения. Испытуемым даётся текст опросника, который они должны заполнить, перед заполнением читается инструкция.
500 руб.
Выбор способа сварки диафрагменной лопатки паровой турбины
Slolka
: 20 октября 2013
Введение
Развитие технологии и оборудования сварочных процессов идет в настоящее время достаточно быстрыми темпами. Это вызвано все более возрастающей потребностью создания качественных неразъемных соединений как из однородных, так и разнородных материалов.
Сварка – технологический процесс получения неразъемных соединений материалов посредством установления межатомных связей между свариваемыми частями при их местном или общем нагреве, или пластическом деформировании, или совместном действием т
10 руб.
Механика жидкости и газа СПбГАСУ 2014 Задача 6 Вариант 20
Z24
: 27 декабря 2025
Ось горизонтального участка трубы диаметром d1 расположена на высоте h1 = (0,25 + 0,05·y) м над уровнем воды в резервуаре II. Ось горизонтального участка трубы диаметром d2 лежит ниже уровня воды в резервуаре II на величину h2 = (0,5 + 0,05·z) м. Длины участков: l1 = (10 + 0,1·y) м; l2 = (20 + 0,1·z) м; l3 = (10 + 0,1·y) м. Напор в резервуаре I H = (1,0 + 0,1·z) м, коэффициенты поворотов ζ30 = 0,7, ζ120 = 1,44.
Определить расход воды в трубопроводе и построить напорную и пьезометрическую лини
400 руб.