Экзамен по дисциплине: Теория вероятностей и математическая статистика Билет №4
Состав работы
|
|
Работа представляет собой файл, который можно открыть в программе:
- Microsoft Word
Описание
1. Теоремы сложения и умножения вероятностей. Условная вероятность.
2. На предприятии 3 телефона, вероятности занятости которых 0,6; 0,4; 0,5 соответственно. Какова вероятность, что хотя бы один свободен?
3. Найти ряд распределения и среднее значение числа выпадений «герба» при 3-х бросаниях монеты.
4. Плотность распределения случайного вектора имеет вид
5.Среднее число вызовов, поступающих на АТС в 1 мин, равно четырём. Найти вероятность того, что за 2 мин поступит: а) 6 вызовов; б) менее шести вызовов; в) не менее шести вызовов. Предполагается, что поток вызовов – простейший.
2. На предприятии 3 телефона, вероятности занятости которых 0,6; 0,4; 0,5 соответственно. Какова вероятность, что хотя бы один свободен?
3. Найти ряд распределения и среднее значение числа выпадений «герба» при 3-х бросаниях монеты.
4. Плотность распределения случайного вектора имеет вид
5.Среднее число вызовов, поступающих на АТС в 1 мин, равно четырём. Найти вероятность того, что за 2 мин поступит: а) 6 вызовов; б) менее шести вызовов; в) не менее шести вызовов. Предполагается, что поток вызовов – простейший.
Дополнительная информация
Уважаемый слушатель, дистанционного обучения,
Оценена Ваша работа по предмету: Теория вероятности и математическая статистика
Вид работы: Экзамен
Оценка:Хорошо
Дата оценки: 09.11.2011
Агульник Владимир Игоревич
Оценена Ваша работа по предмету: Теория вероятности и математическая статистика
Вид работы: Экзамен
Оценка:Хорошо
Дата оценки: 09.11.2011
Агульник Владимир Игоревич
Похожие материалы
Экзамен по дисциплине: "Теория вероятности и математическая статистика". Билет №4. ДО СИБГУТИ
Ivannsk97
: 21 января 2021
Смотреть фотографии.
Вопрос 1.
Если событие А исключает событие Б, то они …
Вопрос 2.
Пусть вероятность события равна тогда вероятность противоположного события равна…
Вопрос 3.
Вычислить значение
Вопрос 4.
Карточки, на которых написано слово ШАШКА перемешали и разложили в произвольном порядке. Какова вероятность, что снова получилось слово ШАШКА?
Вопрос 5.
Формула
Вопрос 6.
Для вычисления вероятности наступления события в схеме Бернулли при большом количестве испытаний используетс
300 руб.
Теория вероятностей и математическая статистика. Билет №4
ANNA
: 18 февраля 2019
1. Локальная и интегральная теоремы Лапласа. Формула Пуассона
2. Из урны, где находятся 4 белых и 8 черных шаров, случайно вытащены 5 шаров. Какова вероятность того, что среди них будет 2 белых шара?
Пронумеруем все шары. Всего шаров 12. Исходом считаем выбор 5 любых шаров.
3. Дискретная случайная величина имеет следующий ряд распределения
Х -10 -5 0 5 10
р а 0,32 2a 0,41 0,03
Найти величину a, математическое ожидание и среднее квадратическое отклонение этой случайной величины.
4. Непр
65 руб.
Экзамен по дисциплине: Теория вероятностей и математическая статистика. Билет №10. (4-й семестр)
daffi49
: 19 января 2014
Билет № 10
1. Дискретная случайная величина. Ряд и функция распределения. Числовые характеристики дискретной случайной величины.
2. В каждой из двух урн содержится 8 черных и 2 белых шара. Из второй урны наудачу извлечен один шар и переложен в первую. Найти вероятность того, что шар, извлеченный из первой урны, окажется черным.
3. Плотность распределения случайной величины Х имеет вид
Найти плотность распределения Y=X 3.
4. Игральная кость бросается три раза. Какова вероятность выпадения
80 руб.
Теория вероятностей и математическая статистика. Экзамен. Билет №4
Damovoy
: 4 февраля 2021
Билет No 4
1. Тема: Общее определение вероятности.
Задача: В ящике 5 белых и 3 чёрных шара. Случайным образом достают 2 шара. События: А–шары белые, В – шары одного цвета. Найти вероятность А+ В.
2. Тема: Дискретные двумерные случайные величины.
Задача: Двумерная с.в. распределена по следующему закону:
0 1
–1 0,1 0,15
0 0,15 0,25
1 0,2 0,15
Найти cov(, ).
61 руб.
Теория вероятностей и математическая статистика. Экзамен. Билет № 4
Gila
: 17 января 2019
1. Локальная и интегральная теоремы Лапласа. Формула Пуассона.
2. Из урны, где находятся 4 белых и 8 черных шаров, случайно вытащены 5 шаров. Какова вероятность того, что среди них будет 2 белых шара?
3. Дискретная случайная величина имеет следующий ряд распределения
200 руб.
Теория вероятностей и математическая статистика. Экзамен. Билет №4
growlist
: 11 апреля 2017
Билет No 4
1. Тема: Общее определение вероятности.
Задача: В ящике 5 белых и 3 чёрных шара. Случайным образом достают 2 шара. События: А–шары белые, В – шары одного цвета. Найти вероятность А+ В.
2. Тема: Дискретные двумерные случайные величины.
Задача: Двумерная с.в. распределена по следующему закону:
0 1
–1 0,1 0,15
0 0,15 0,25
1 0,2 0,15
Найти cov(, ).
90 руб.
Теория вероятностей и математическая статистика. Экзамен. Билет №4.
volodaiy
: 18 июня 2016
Билет № 4
1. Локальная и интегральная теоремы Лапласа. Формула Пуассона.
ЛОКАЛЬНАЯ ТЕОРЕМА ЛАПЛАСА
2. Из урны, где находятся 4 белых и 8 черных шаров, случайно вытащены 5 шаров. Какова вероятность того, что среди них будет 2 белых шара?
3. Дискретная случайная величина имеет следующий ряд распределения
Х -10 -5 0 5 10
р а 0,32 2a 0,41 0,03
Найти величину a, математическое ожидание и среднее квадратическое отклонение этой случайной величины.
4. Непрерывная случайная величина имеет плотность ра
150 руб.
Теория вероятностей и математическая статистика. Работа экзаменационная. Билет №4
SemenovSam
: 2 мая 2016
ПОЛНОЕ ОПИСАНИЕ РАБОТЫ НА СКРИНШОТЕ!
1. Локальная и интегральная теоремы Лапласа. Формула Пуассона.
2. Из урны, где находятся 4 белых и 8 черных шаров, случайно вытащены 5 шаров. Какова вероятность того, что среди них будет 2 белых шара?
3. Дискретная случайная величина имеет следующий ряд распределения
Х -10 -5 0 5 10
р а 0,32 2a 0,41 0,03
Найти величину a, математическое ожидание и среднее квадратическое отклонение этой случайной величины.
4. Непрерывная случайная величина имеет плотность р
120 руб.
Другие работы
Разработка бизнес-плана инновационного проекта
FOXYS
: 1 октября 2017
Повышение качества отливки по газифицируемым моделям за счет оптимизации конструктивных параметров литниковой системы.
300 руб.
Теория информации. Лабораторная работа №2. Вариант №6
Евгений68
: 2 октября 2014
Оптимальный код Хаффмана
Порядок выполнения работы
1. Изучить теоретический материал гл. 3 и гл.4.
2. Реализовать процедуру построения оптимального кода Хаффмана.
3. Построить код Хаффмана для текста на английском языке (использовать файл не менее 1 Кб). Распечатать полученную кодовую таблицу в виде:
100 руб.
Теория электрических цепей. Работа лабораторная
Капитан1
: 15 января 2019
Теория электрических цепей ч. 1. Лабораторные работы 1-3. Вариант 6
99 руб.
Рабинович Сборник задач по технической термодинамике Задача 134
Z24
: 30 ноября 2025
Свинцовый шар падает с высоты h=100 м на твердую поверхность. В результате падения кинетическая энергия шара полностью превращается в теплоту. Одна треть образовавшейся теплоты передается окружающей среде, а две трети расходуются на нагревание шара. Теплоемкость свинца с=0,126 кДж/(кг·К). Определить повышение температуры шара.
Ответ: Δt=5,2 ºС.
150 руб.