Определение металлических примесей методом атомно-абсорбционной спектрометрии в марганце марки Мн-998
Состав работы
|
|
|
|
Работа представляет собой rar архив с файлами (распаковать онлайн), которые открываются в программах:
- Microsoft Word
Описание
СОДЕРЖАНИЕ
ВВЕДЕНИЕ
1. ЛИТЕРАТУРНЫЙ ОБЗОР
1.1 История появления метода
1.2 Характеристика атомно-абсорбционного анализа
1.2.1 Общая характеристика метода
1.2.2 Схемы установок атомно-абсорбционных спектрометров
1.2.3 Источники излучения
1.2.3.1 Естественное уширение
1.2.3.2 Допплеровское уширение
1.2.3.3 Лоренцевское уширение
1.2.3.3 Лампы с полым катодом
1.2.4 Атомизаторы
1.2.4.1 Пламенный атомизатор
1.2.4.1.1 Процессы, происходящие в пламени
1.2.4.2 Электротермический атомизатор
1.2.4.3 Гидридная техника
1.2.5 Монохроматоры
1.2.6 Детекторы
1.2.7 Количественный анализ
1.2.8 Факторы, влияющие на величину абсорбционного сигнала
1.2.8.1 Коррекция фонового поглощения
1.2.8.1.1 Применение дейтериевой лампы
1.2.8.1.2 Метод двух линий
1.2.8.1.3 Применение эффекта Зеемана
1.2.9 Помехи и способы их устранения при проведении атомно-абсорбционного анализа
1.2.9.1 Влияния в пламени
1.2.9.2 Методы устранения мешающих влияний в пламенном атомно-абсорбционном анализе
1.2.9.3 Влияния в графитовой печи
1.2.9.4 Способы устранения мешающих влияний
1.2.10 Метрологические характеристики метода
1.2.11 Область применения атомно-абсорбционной спектрометрии
1.3 Определение примесей в марганце различными методами анализа
1.3.1 Фотометрическое определение фосфора в металлическом и азотированном марганце
1.3.1.1 Фотометрический метод с применением аскорбиновой кислоты
1.3.1.2 Фотометрический метод с применением тиомочевины или ионов двухвалентного железа
1.3.2 Фотометрическое и гравиометрическое определение кремния в металлическом и азотированном марганце
1.3.2.1 Фотометрическое определение кремния в металлическом и азотированном марганце
1.3.2.2 Гравиметрический метод кремния в металлическом и азотированном марганце
1.3.3 Фотометрическое, атомно-абсорбционное и титриметрическое определения железа в металлическом и азотированном марганце
1.3.3.1 Фотометрическое определение железа в металлическом и азотированном марганце с применением 1,10-фенантроина
1.3.3.2 Фотометрический метод с применением сульфосалициловой кислоты
1.3.3.3 Атомно-абсорбционный метод
1.3.3.4 Титриметрический метод
1.3.4 Фотометрические и атомно-абсорбционные методы определения никеля в металлическом марганце и металлическом азотированном марганце
1.3.4.1 Фотометрическое определение никеля в металлическом марганце и металлическом азотированном марганце
1.3.4.2 Атомно-абсорбционное определение никеля в металлическом марганце и металлическом азотированном марганце
1.3.5 Фотометрическое и атомно-абсорбционное методы определения меди в металлическом марганце и металлическом азотированном марганце
1.3.5.1 Фотометрическое определение меди в металлическом марганце и металлическом азотированном марганце
1.3.5.2 Атомно-абсорбционное определение меди в металлическом марганце и металлическом азотированном марганце
1.3.6 Атомно-абсорбционное методы определения кальция и магния металлическом марганце и металлическом азотированном марганце
1.3.7 Фотометрический метод определения алюминия в металлическом марганце и металлическом азотированном марганце
1.3.8 Фотометрический метод определения титана в металлическом марганце и металлическом азотированном марганце
1.3.9 Определение марганца в металлическом и азотированном марганце
2. ЭКСПЕРЕМЕНТАЛЬНАЯ ЧАСТЬ
2.1 Оборудование и реактивы
2.2 Подготовка к проведению анализа и приготовление серии стандартных растворов
2.3 Отбор и хранение проб
2.4 Приготовление исходных растворов марганца
2.5 Определение систематической ошибки приготовления растворов марганца
2.6 Методика определения металлических примесей в образцах марганца марки Мн 998 методом атомно-абсорбционной спектрометрии согласно ГОСТ 16698.6-71, ГОСТ 16698.7-71, ГОСТ 16698.9-71, ГОСТ 16698.10-71
2.7 Формулы для статистической обработки полученных результатов
3. ОБРАБОТКА РЕЗУЛЬТАТОВ
3.1 Качественное определение металлических примесей в марганце марки Мн 998
3.2 Построение градуировочного графика для алюминия
3.3 Статистическая обработка графика градуировочной зависимости для алюминия
3.4 Построение градуировочного графика для железа
3.5 Статистическая обработка графика градуировочной зависимости для железа
3.6 Построение градуировочной зависимости для меди
3.7 Статистическая обработка графика градуировочной зависимости для меди
3.8 Построение градуировочной зависимости для никеля
3.9 Статистическая обработка графика градуировочной зависимости для никеля
3.10 Количественное определение алюминия в образцах марганца марки Мн 998
3.11 Количественное определение железа в образцах марганца марки Мн 998
3.12 Количественное определение меди в образцах марганца марки Мн 998
3.13 Количественное определение никеля в образцах марганца марки Мн 998
3.14 Количественная характеристика примесей алюминия, железа, меди, никеля в образцах марганца марки Мн 998
3.15 Значения относительных стандартных отклонений, коэффициентов чувствительности и нижних границ определяемых концентраций для металлических примесей обнаруженных в составе марганца марки Мн 998
ВЫВОДЫ
СПИСОК ЛИТЕРАТУРЫ
Метод атомно-абсорбционной спектрометрии является универсальным количественным методом для определения небольших количеств элементов (порядка 10-4 или 10-5%) в большинстве природных (почвах, удобрениях, растениях, пищевых продуктах, нефти, смазочных маслах, питьевых, природных и сточных водах, морской воде, воздухе, и т. д.) и технических (металлы, сплавы, продукты гидрометаллургической переработки руд и т. д.) объектах. Данным методом можно определить почти 80 элементов в их числе Al, Mg, Сu, Pb, Fe, Ag, Ni, Hg, Cd, Cr, Mn.
Метод обладает высокой чувствительностью (для большинства элементов составляют 10-6 - 10-4 в пламенном и 10-9 - 10-7 % масс) и селективностью, широким диапазоном определяемых концентраций (диапазон значений обычно составляет от нескольких сотых до 0,6 - 1,2 единиц оптической плотности), и воспроизводимостью.
Целью данной работы является качественное и количественное определение методом атомно-абсорбционной спектрометрии примесей алюминия, железа, меди, никеля, титана, кальция и магния в образцах марганца марки Мн 998.
Задачами настоящей работы является:
1. освоение методик атомно-абсорбционной спектрометрии
2. качественное и количественное определение металлических примесей в марганце марки Мн 998
3. освоение методов статистической обработки данных.
ВВЕДЕНИЕ
1. ЛИТЕРАТУРНЫЙ ОБЗОР
1.1 История появления метода
1.2 Характеристика атомно-абсорбционного анализа
1.2.1 Общая характеристика метода
1.2.2 Схемы установок атомно-абсорбционных спектрометров
1.2.3 Источники излучения
1.2.3.1 Естественное уширение
1.2.3.2 Допплеровское уширение
1.2.3.3 Лоренцевское уширение
1.2.3.3 Лампы с полым катодом
1.2.4 Атомизаторы
1.2.4.1 Пламенный атомизатор
1.2.4.1.1 Процессы, происходящие в пламени
1.2.4.2 Электротермический атомизатор
1.2.4.3 Гидридная техника
1.2.5 Монохроматоры
1.2.6 Детекторы
1.2.7 Количественный анализ
1.2.8 Факторы, влияющие на величину абсорбционного сигнала
1.2.8.1 Коррекция фонового поглощения
1.2.8.1.1 Применение дейтериевой лампы
1.2.8.1.2 Метод двух линий
1.2.8.1.3 Применение эффекта Зеемана
1.2.9 Помехи и способы их устранения при проведении атомно-абсорбционного анализа
1.2.9.1 Влияния в пламени
1.2.9.2 Методы устранения мешающих влияний в пламенном атомно-абсорбционном анализе
1.2.9.3 Влияния в графитовой печи
1.2.9.4 Способы устранения мешающих влияний
1.2.10 Метрологические характеристики метода
1.2.11 Область применения атомно-абсорбционной спектрометрии
1.3 Определение примесей в марганце различными методами анализа
1.3.1 Фотометрическое определение фосфора в металлическом и азотированном марганце
1.3.1.1 Фотометрический метод с применением аскорбиновой кислоты
1.3.1.2 Фотометрический метод с применением тиомочевины или ионов двухвалентного железа
1.3.2 Фотометрическое и гравиометрическое определение кремния в металлическом и азотированном марганце
1.3.2.1 Фотометрическое определение кремния в металлическом и азотированном марганце
1.3.2.2 Гравиметрический метод кремния в металлическом и азотированном марганце
1.3.3 Фотометрическое, атомно-абсорбционное и титриметрическое определения железа в металлическом и азотированном марганце
1.3.3.1 Фотометрическое определение железа в металлическом и азотированном марганце с применением 1,10-фенантроина
1.3.3.2 Фотометрический метод с применением сульфосалициловой кислоты
1.3.3.3 Атомно-абсорбционный метод
1.3.3.4 Титриметрический метод
1.3.4 Фотометрические и атомно-абсорбционные методы определения никеля в металлическом марганце и металлическом азотированном марганце
1.3.4.1 Фотометрическое определение никеля в металлическом марганце и металлическом азотированном марганце
1.3.4.2 Атомно-абсорбционное определение никеля в металлическом марганце и металлическом азотированном марганце
1.3.5 Фотометрическое и атомно-абсорбционное методы определения меди в металлическом марганце и металлическом азотированном марганце
1.3.5.1 Фотометрическое определение меди в металлическом марганце и металлическом азотированном марганце
1.3.5.2 Атомно-абсорбционное определение меди в металлическом марганце и металлическом азотированном марганце
1.3.6 Атомно-абсорбционное методы определения кальция и магния металлическом марганце и металлическом азотированном марганце
1.3.7 Фотометрический метод определения алюминия в металлическом марганце и металлическом азотированном марганце
1.3.8 Фотометрический метод определения титана в металлическом марганце и металлическом азотированном марганце
1.3.9 Определение марганца в металлическом и азотированном марганце
2. ЭКСПЕРЕМЕНТАЛЬНАЯ ЧАСТЬ
2.1 Оборудование и реактивы
2.2 Подготовка к проведению анализа и приготовление серии стандартных растворов
2.3 Отбор и хранение проб
2.4 Приготовление исходных растворов марганца
2.5 Определение систематической ошибки приготовления растворов марганца
2.6 Методика определения металлических примесей в образцах марганца марки Мн 998 методом атомно-абсорбционной спектрометрии согласно ГОСТ 16698.6-71, ГОСТ 16698.7-71, ГОСТ 16698.9-71, ГОСТ 16698.10-71
2.7 Формулы для статистической обработки полученных результатов
3. ОБРАБОТКА РЕЗУЛЬТАТОВ
3.1 Качественное определение металлических примесей в марганце марки Мн 998
3.2 Построение градуировочного графика для алюминия
3.3 Статистическая обработка графика градуировочной зависимости для алюминия
3.4 Построение градуировочного графика для железа
3.5 Статистическая обработка графика градуировочной зависимости для железа
3.6 Построение градуировочной зависимости для меди
3.7 Статистическая обработка графика градуировочной зависимости для меди
3.8 Построение градуировочной зависимости для никеля
3.9 Статистическая обработка графика градуировочной зависимости для никеля
3.10 Количественное определение алюминия в образцах марганца марки Мн 998
3.11 Количественное определение железа в образцах марганца марки Мн 998
3.12 Количественное определение меди в образцах марганца марки Мн 998
3.13 Количественное определение никеля в образцах марганца марки Мн 998
3.14 Количественная характеристика примесей алюминия, железа, меди, никеля в образцах марганца марки Мн 998
3.15 Значения относительных стандартных отклонений, коэффициентов чувствительности и нижних границ определяемых концентраций для металлических примесей обнаруженных в составе марганца марки Мн 998
ВЫВОДЫ
СПИСОК ЛИТЕРАТУРЫ
Метод атомно-абсорбционной спектрометрии является универсальным количественным методом для определения небольших количеств элементов (порядка 10-4 или 10-5%) в большинстве природных (почвах, удобрениях, растениях, пищевых продуктах, нефти, смазочных маслах, питьевых, природных и сточных водах, морской воде, воздухе, и т. д.) и технических (металлы, сплавы, продукты гидрометаллургической переработки руд и т. д.) объектах. Данным методом можно определить почти 80 элементов в их числе Al, Mg, Сu, Pb, Fe, Ag, Ni, Hg, Cd, Cr, Mn.
Метод обладает высокой чувствительностью (для большинства элементов составляют 10-6 - 10-4 в пламенном и 10-9 - 10-7 % масс) и селективностью, широким диапазоном определяемых концентраций (диапазон значений обычно составляет от нескольких сотых до 0,6 - 1,2 единиц оптической плотности), и воспроизводимостью.
Целью данной работы является качественное и количественное определение методом атомно-абсорбционной спектрометрии примесей алюминия, железа, меди, никеля, титана, кальция и магния в образцах марганца марки Мн 998.
Задачами настоящей работы является:
1. освоение методик атомно-абсорбционной спектрометрии
2. качественное и количественное определение металлических примесей в марганце марки Мн 998
3. освоение методов статистической обработки данных.
Другие работы
Кейс. Социология.
pianist12
: 26 января 2016
Кейс 2
Ситуация № 4
Игорь Петров во время обучения в университете женился на Гунаре Самитовой. Родители Гульнары были против этого брака. Они считали, что их дочь должна быть женой только мужчины той же культуры и вероисповедания. Через несколько месяцев их брак распался.
Ситуация рассматривается на основе материалов «Социально-этническая структура общества».
Как должен был решиться вопрос о сохранении брака, какие базовые моменты и отношения можно применить для счастливой семейной жизни.
Ситу
100 руб.
Рабинович О.М. Сборник задач по технической термодинамике Задача 182
Z24
: 25 сентября 2025
8 м³ воздуха при р1=0,09 МПа и t1=20ºC сжимаются при постоянной температуре до 0,81 МПа.
Определить конечный объем, затраченную работу и количество теплоты, которое необходимо отвести от газа.
Ответ: V2=0889 м³, Q=L=-1581 кДж.
130 руб.
Техническая эксплуатация административного здания
GnobYTEL
: 27 июня 2016
Организационно-технические решения по реализации проекта
Управление административным зданием
Процесс управления
Система технической эксплуатации
Персонал, обслуживающий административное здание
Техническая эксплуатация административным зданием
Проведение плановых осмотров
Система планово-предупредительного ремонта
Текущий ремонт
Работы текущего ремонта
Капитальный ремонт
Организационно-техническая подготовка
Календарный план
Санитарное содержание административного здания
Заключение по разд
150 руб.
Расчет теплообменного аппарата для подогрева инвертного сахарного сиропа
DoctorKto
: 12 января 2013
Задание: рассчитать и спроектировать теплообменник выносного контура подогрева сахарного сиропа до t установки непрерывного приготовления инвертного сахарного сиропа. Расход сиропа G (65% масс. сухих в-в). Нагрев осуществляется насыщенным водяным паром с избыточным давлением P. G=0,5 кг/с; t=100 C; тнач=70 С; Р=0,1 МПа.
Проект содержит: описание технологической схемы; расчет и подбор теплообменного аппарата; расчет толщины тепловой изоляции аппарата; расчет опор аппарата; расчет штуцеров; расчет