Контрольная работа По дисциплине: Математический анализ. 2-й семестр. Вариант: №4

Цена:
50 руб.

Состав работы

material.view.file_icon
material.view.file_icon Контрольная Мат. анализ.doc
Работа представляет собой rar архив с файлами (распаковать онлайн), которые открываются в программах:
  • Microsoft Word

Описание

1. Даны функция z=z(x,y), точка A(x0;y0) и вектор a(ax;ay). Найти: 1) grad z в точке А. 2) производную в точке А по направлению вектора a.


Решение:
1)
Подставляем координаты точки А, тогда ;
2. Вычислить с помощью двойного интеграла в полярных координатах площадь фигуры, ограниченной кривой, заданной уравнением в декартовых координатах (a>0).


3. Вычислить с помощью тройного интеграла объем тела, ограниченного указанными поверхностями.


4. Исследовать сходимость числового ряда.


Решение:
Если дан числовой ряд и существует предел , тогда ряд сходится при и
5. Найти интервал сходимости степенного ряда 

Решение:
Определяем радиус сходимости ряда
6. Вычислить определенный интеграл с точностью до 0,001, разложив подынтегральную функцию в степенной ряд и затем проинтегрировать его почленно.

Решение:
Разложим подынтегральную функцию в ряд Маклорена, применяя формулу
7. Разложить данную функцию f(x) в ряд Фурье

8. Найти общее решение дифференциального уравнения.

Решение:
; пусть , тогда
9. Найти частное решение дифференциального уравнения , удовлетворяющее начальным условиям

Дополнительная информация

СибГУТИ вар №4
Оценка:Зачет
Дата оценки: 28.11.2011
Рецензия:Уважаемый .....................,
Ваша работа выполнена хорошо, существенных замечаний нет.
Агульник Владимир Игоревич
Контрольная работа по дисциплине: Математический анализ. Вариант №8 (2-й семестр)
Задание 1. Даны функция z=z(x,y), точка A(x0;y0) и вектор a(ax;ay). Найти: 1) grad z в точке А. 2) производную в точке А по направлению вектора a. z = ln(3x2 +4y2); A (1;3), a (2;-1) Задание 2. Вычислить с помощью двойного интеграла в полярных координа-тах площадь фигуры, ограниченной кривой, заданной уравнением в декарто-вых координатах (a>0). y^6 = a^2∙(y^4 - x^4) Задача 3. Вычислить с помощью тройного интеграла объем тела, ограни-ченного указанными поверхностями. z = 0, z = 1 – y^2, x =
User Roma967 : 26 февраля 2015
450 руб.
promo
Контрольная работа по дисциплине: Математический анализ. Вариант №3 (1-й семестр)
Задача 1. Провести исследование функций с указанием а) области определения и точек разрыва; б) экстремумов; с) асимптот. По полученным данным построить графики функции. f(x)=(x^(2)-1)/(x-2) Задача 2. Найти неопределённые интегралы (см. скрин) Задача 3. Вычислить площади областей, заключённых между линиями: у = 4 - x^(2); y = 4х – 1
User Roma967 : 21 ноября 2014
270 руб.
Контрольная работа по дисциплине: Математический анализ. Вариант №3 (1-й семестр)
Контрольная работа по дисциплине: Математический анализ. Вариант №9. 2-й семестр
1. Даны: функция z=z(x,y), точка A(x0;y0) и вектор a(ax;ay). Найти: 1) grad z в точке А. 2. Вычислить с помощью двойного интеграла в полярных координатах площадь фигуры, ограниченной кривой, заданной уравнением в декартовых координатах (a>0). 3. Вычислить с помощью тройного интеграла объем тела, ограниченного указанными поверхностями.
User sag : 17 апреля 2014
70 руб.
Контрольная работа по дисциплине: Математический анализ. Вариант №3 (2-й семестр)
Вариант №3 1. Даны функция z=z(x,y), точка A(x0;y0) и вектор a(ax;ay). Найти: 1) grad z в точке А. 2) производную в точке А по направлению вектора a. z=ln (5x^(2)+3y^(2)); A (1;1), a (3;2) 2. Вычислить с помощью двойного интеграла в полярных координатах площадь фигуры, ограниченной кривой, заданной уравнением в декартовых координатах (a>0). (x^(2)+y^(2))^(3)=a^(2)x^(2)(4x^(2)+3y^(2)) 3. Вычислить с помощью тройного интеграла объем тела, ограниченного указанными поверхностями. z=0, z=4-x-y, x^(
User xtrail : 10 февраля 2014
600 руб.
Контрольная работа по дисциплине: Математический анализ. Вариант №3 (1-й семестр)
Задача 1. Дана система трех линейных уравнений. Найти решение ее двумя способами: методом Крамера и методом Гаусса. 4x-3y+2z=9 2x+5y-3z=4 5x+6y-2z=18 Задача 2. Даны координаты вершин пирамиды А1А2А3А4. Найти: 1. длину ребра А1А2; 2. угол между ребрами А1А2 и А1А4; 3. площадь грани А1А2А3; 4. уравнение плоскости А1А2А3. 5. объём пирамиды А1А2А3А4. А1 ( 0; 2; -3), А2 ( 2; 0; 1), А3 ( 4; 0; 3), А4 ( 2; 6; 5).
User xtrail : 31 января 2014
200 руб.
Контрольная работа по дисциплине: Математический анализ. Вариант №7 (2-й семестр)
Задача 1. Даны функция z=z(x,y), точка A(x ;y ) и вектор a(a ;a ). Найти: 1) grad z в точке А. 2) производную в точке А по направлению вектора a. z=arcsin(x^(2)/y); A(1;2), a(5;-12) Задача 2. Вычислить с помощью двойного интеграла в полярных координатах площадь фигуры, ограниченной кривой, заданной уравнением в декартовых координатах (a>0). x^4=a^2*(x^2-3y^2) Задача 3. Вычислить с помощью тройного интеграла объем тела, ограниченного указанными поверхностями. z=0; x^2+y^2=z; x^2+y^2=4 Задача
User xtrail : 25 января 2014
370 руб.
Контрольная работа по дисциплине: Математический анализ. Вариант № 5 (2-й семестр)
1. Даны функция z=z(x,y), точка A(x0;y0) и вектор a(ax;ay). Найти: 1) grad z в точке А. 2) производную в точке А по направлению вектора a. 2. Вычислить с помощью двойного интеграла в полярных координатах площадь фигуры, ограниченной кривой, заданной уравнением в декартовых координатах (a>0). 3. Вычислить с помощью тройного интеграла объем тела, ограниченного указанными поверхностями. 4. Исследовать сходимость числового ряда. 5. Найти интервал сходимости степенного ряда 6. Вычислить определенный
User bertone : 3 января 2014
250 руб.
Контрольная работа по дисциплине: Математический анализ. Вариант № 6 (1-й семестр)
Задача 1. Найти пределы функций Задача 2. Найти значение производных данных функций в точке x=0,y=(5-x)/tg(x)+1 Задача 3 Провести исследование функции y=ln(x^2-4) Задача 4. Найти неопределенные интегралы: ∫(x^2 dx)/(x^6+4)
User daffi49 : 1 января 2014
45 руб.
Разработка программного обеспечения для автоматизации сбора, анализа и обработки данных микросхем.
Введение 1. Цель работы и постановка задач. 1.1 Постановка задачи. 1.2 Цель работы. 1.3 Объект и предмет исследования 1.4 Задачи работы. 2. Используемые средства и оборудование для разработки. 2.1 Средства разработки 2.2 Обрудование используемое в составе АРМ 13 3. Описание программной реализации. 3.1 Программная реализация Заключение Список использованных источников Приложение А 1. Устройство и работа АРМ Приложение Б 1. Листинг используемых библиотек 2. Листинг основной програм
User vlanproekt : 2 мая 2017
490 руб.
Исследование и разработка устройства измерения и регулирования уровня минеральной воды в скважине
1. Введение ……………………………………………………………………. 1 2. Устройство и принцип работы схемы измерения ..…………………… 2 3. Сравнительный анализ конструкций и характеристик датчиков …. 3 3.1. Введение ……………………………………………………………….. 3 3.2. Датчики давления ……………………………………………………. 4 3.2.1. Основные некомпенсированные ………………………. 11 3.2.2. Калиброванные с температурной компенсацией …. 19 3.2.3. С преобразованием сигнала …………………………… 27 3.2.4. С высоким полным сопротивлением ………………….. 3
User ostah : 17 сентября 2012
200 руб.
Особливості біохімічного складу сполучної тканини аорти та процесів вільнорадикального окиснення при аневризмі аорти із загрозою розриву
ЗАГАЛЬНА ХАРАКТЕРИСТИКА РОБОТИ Актуальність теми. Для сучасної медичної науки актуальною є проблема прогнозування розриву аневризми аорти (АА). Серед фахівців все ширше використовується термін "аневризматична хвороба", коли у хворих відбуваються рецидиви розриву аневризм аорти через кілька років після операції. Почали частіше з`являтися повідомлення й про розрив малих аневризм (менше 3 см) (Чанг Д.Ж., Штейн Т.А. та ін., 1998; Dоerr W., 1987; Farodi J. C., 1996). Слід також зважати на те, що проб
User ostah : 2 февраля 2013
Зачетная работа по дисциплине. Физическая культура
Вариант 5 Вопрос 1 Функциональная активность человека и взаимосвязь физической и умственной деятельности. Вопрос 2 Выносливость и методика ее развития.
User Дмитрий5 : 21 марта 2017
200 руб.
up Наверх