Контрольная работа №2 по математическому анализу. Вариант №5
Состав работы
|
|
|
|
Работа представляет собой zip архив с файлами (распаковать онлайн), которые открываются в программах:
- Microsoft Word
Описание
1. Даны функция z=z(x,y), точка A(x0;y0) и вектор a(ax;ay). Найти: 1) grad z в точке А. 2) производную в точке А по направлению вектора a.
2. Вычислить с помощью двойного интеграла в полярных координатах площадь фигуры, ограниченной кривой, заданной уравнением в декартовых координатах (a>0).
3. Вычислить с помощью тройного интеграла объем тела, ограниченного указанными поверхностями.
4. Даны векторное поле F=Xi+Yj+Zk и плоскость (p) Ax+By+Cz+D=0, которая совместно с координатными плоскостями образует пирамиду V. Пусть s — основание — контур, ограничивающий s;пирамиды, принадлежащие плоскости (P); l n — нормаль к s, направленная вне пирамиды V. Требуется вычислить:
1) поток векторного поля F через поверхность s в направлении нормали n;
2) циркуляцию векторного поля F по замкнутому контуру l непосредственно и применив теорему Стокса к контуру l и ограниченной им поверхности s с нормалью n;
3) поток векторного поля F через полную поверхность пирамиды V в направлении внешней нормали к ее поверхности непосредственно и применив теорему Остроградского. Сделать чертеж.
100%ЗАЧЕТ
2. Вычислить с помощью двойного интеграла в полярных координатах площадь фигуры, ограниченной кривой, заданной уравнением в декартовых координатах (a>0).
3. Вычислить с помощью тройного интеграла объем тела, ограниченного указанными поверхностями.
4. Даны векторное поле F=Xi+Yj+Zk и плоскость (p) Ax+By+Cz+D=0, которая совместно с координатными плоскостями образует пирамиду V. Пусть s — основание — контур, ограничивающий s;пирамиды, принадлежащие плоскости (P); l n — нормаль к s, направленная вне пирамиды V. Требуется вычислить:
1) поток векторного поля F через поверхность s в направлении нормали n;
2) циркуляцию векторного поля F по замкнутому контуру l непосредственно и применив теорему Стокса к контуру l и ограниченной им поверхности s с нормалью n;
3) поток векторного поля F через полную поверхность пирамиды V в направлении внешней нормали к ее поверхности непосредственно и применив теорему Остроградского. Сделать чертеж.
100%ЗАЧЕТ
Похожие материалы
Контрольная работа №2 по математическому анализу
Druzhba1356
: 22 сентября 2014
Вариант No1
1. Даны функция z=z(x,y), точка A(x0;y0) и вектор a(ax;ay). Найти: 1) grad z в точке А. 2) производную в точке А по направлению вектора a.
2. Вычислить с помощью двойного интеграла в полярных координатах площадь фигуры, ограниченной кривой, заданной уравнением в декартовых координатах (a>0).
3. Вычислить с помощью тройного интеграла объем тела, ограниченного указанными поверхностями.
4. Даны векторное поле F=Xi+Yj+Zk и плоскость (p) Ax+By+Cz+D=0, которая совместно с координатными
40 руб.
Контрольная работа №2 по Математическому анализу.
Udacha2013
: 26 февраля 2014
1. Даны функция z=z(x,y), точка A(x0;y0) и вектор a(ax;ay). Найти:
1) grad z в точке А.
2) производную в точке А по направлению вектора a.
2. Вычислить с помощью двойного интеграла в полярных координатах площадь фигуры, ограниченной кривой, заданной уравнением в декартовых координатах (a>0).
3. Вычислить с помощью тройного интеграла объем тела, ограниченного указанными поверхностями.
4. Даны векторное поле F=Xi+Yj+Zk — контур, ограничивающий s;и плоскость (p) Ax+By+Cz+D=0, которая совместно с
230 руб.
Контрольная работа №2 по математическому анализу
aragorn24
: 10 февраля 2014
Вариант No1
1. Даны функция z=z(x,y), точка A(x0;y0) и вектор a(ax;ay). Найти: 1) grad z в точке А. 2) производную в точке А по направлению вектора a.
2. Вычислить с помощью двойного интеграла в полярных координатах площадь фигуры, ограниченной кривой, заданной уравнением в декартовых координатах (a>0).
3. Вычислить с помощью тройного интеграла объем тела, ограниченного указанными поверхностями.
4. Даны векторное поле F=Xi+Yj+Zk и плоскость (p) Ax+By+Cz+D=0, которая совместно с координатными
50 руб.
Контрольная работа №2 по математическому анализу. 10-й вариант
Despite
: 21 января 2013
Задача No 1: Даны функция z=z(x,y), точка A(x0;y0) и вектор a(ax;ay). Найти: 1) grad z в точке А. 2) производную в точке А по направлению вектора a z=3x^2y^2+5y^2x A(1;1) a(2;1)
Задача No 2: Вычислить с помощью двойного интеграла в полярных координатах площадь фигуры, ограниченной кривой, заданной уравнением в декартовых координатах (a>0).y^6=a^2(3y^2-x^2)(y^2+x^2)
Задача No 3: Вычислить с помощью тройного интеграла объем тела, ограниченного указанными поверхностями.z=0
z=4 y, x+y=4
Задача No 4:
150 руб.
Контрольная работа № 2 по дополнительным главам математического анализа. Вариант №5
natin83
: 4 марта 2012
1. Вычертить область плоскости по данным условиям:
2. Найти все особые точки функции, определить их характер (для полюсов указать порядок) и вычислить вычеты в них.
3. При помощи вычетов вычислить данный интеграл по контуру.
200 руб.
Контрольная работа №2 (Математический анализ) В-6
banderas0876
: 6 мая 2015
Вариант 3.6
Задача 3
Найти пределы функций:
a) . Неопределенность вида . Поделив числитель и знаменатель на и воспользовавшись арифметическими свойствами пределов получим:
b) . Неопределенность вида . Поделив числитель и знаменатель на и воспользовавшись арифметическими свойствами пределов получим:
Т.к. , то
.
Из первого замечательного предела следует, что , т.е.
. Значит
100 руб.
Контрольная работа №2 по дисциплине: Математический анализ
pepol
: 5 декабря 2013
вариант№7
1. Вычертить область плоскости по данным условиям:
2. Найти все особые точки функции, определить их характер (для полюсов указать порядок) и вычислить вычеты в них.
3. При помощи вычетов вычислить данный интеграл по контуру.
100 руб.
Контрольная работа №2. Специальные главы математического анализа
worknecro
: 9 сентября 2015
Задача 1.
Вычертить область плоскости по данным условиям:
Задача 2.
Найти все особые точки функции, определить их характер (для полюсов указать порядок) и вычислить вычеты в них.
Задача 3.
При помощи вычетов вычислить данный интеграл по контуру.
150 руб.
Другие работы
Подъемник шиномонтажный
proekt-sto
: 21 января 2022
СОДЕРЖАНИЕ
Введение 5
1 Регламент, справка патентно-информационных исследований 7
2 Анализ выбранных аналогов и обоснование прототипа 16
3 Матрица сравнительного анализа технических решений по критериям эффективности. 18
4 Разработка функционально-физической схемы технического предложения 20
5 Описание технического предложения 21
6 Расчеты, подтверждающие работоспособность и надежность конструкции 24
Заключение 26
Список использованных источников 27
Целью курсового проекта является ознакомление
1000 руб.
Контрольная работа. Основы построения телекоммуникационных систем и сетей. 6вариант
qqq21
: 12 октября 2011
Задача №1 3
Задача №2 4
Задача №3 6
Задача №4 7
ТЕОРЕТИЧЕСКИЕ ВОПРОСЫ 12
1.7 Каким образом регламентируется работа систем радиовещания в мировой практике? 12
2.5. Поясните сущность факсимильной передачи сообщений 13
5.7. Выделите основные функции, выполняемые коммутатором. 15
7.9. Каковы особенности построения спутниковой системы подвижной связи?. 15
Список использованной литературы 17
Задача №1
Определить мощность ТВ радиопередатчика Р, обеспечивающего требуемое значение напряженности электром
50 руб.
МЧ00.18.00.00 СБ Тиски задание 18 Боголюбова С.К.
vermux1
: 18 июня 2008
Тиски выполнены в компасе 3D V8
+ cборочный чертеж и спецификация
Задание №18 из альбома Боголюбова С.К.
80 руб.
Издержки фирмы. Макроэкономическое равновесие. Операции на открытом рынке как метод кредитно-денежной политике государства
Lokard
: 9 ноября 2013
Содержание
1. Издержки фирмы
2. Операции на открытом рынке
3. Макроэкономическое равновесие
1. Издержки фирмы
Любая фирма, прежде чем начать производство, должна четко представлять, на какую прибыль она может рассчитывать. Для этого она изучит спрос и определит, по какой цене будет продаваться продукция, и сравнит предполагаемые доходы' с издержками. К категории переменных, а непрямые расходы в зависимости от конкретного случая могут фирмы, связанный с увеличением объема выпуска, называ
10 руб.