Контрольная работа по дисциплине: Теория вероятностей и математическая статистика. 4-й семестр. 6-й вариант
Состав работы
|
|
|
|
Работа представляет собой zip архив с файлами (распаковать онлайн), которые открываются в программах:
- Microsoft Word
Описание
Тема: случайные события
10.6 Две команды по 20 спортсменов производят жеребьёвку для присвоения номеров участникам соревнований. Два брата входят в состав различных команд. Найти вероятность того, что братья будут участвовать в соревнованиях под одним и тем же номером 18.
11.6. Вероятность появления события в каждом из независимых испытаний равна 0,8. Найти вероятность того, что событие наступит 60 раз в 100 испытаниях.
12.6 Закон распределения дискретной случайной величины можно изобразить графически. С этой целью на прямоугольной системе координат строят точки M1(x1; p1), M2(x2; p2), …, Mn(xn; pn), где xi – возможные значения случайной величины, а pi – соответствующие вероятности, н соединяют их последовательно отрезками прямых. Полученную фигуру называют многоугольником распределения.
В задаче требуется найти: а) математическое ожидание; б) дисперсию; в) среднее квадратическое отклонение дискретной случайной величины X по заданному закону её распределения, заданному таблично (в первой строке таблицы указаны возможные значения, во второй строке – вероятности возможных значений).
Построим многоугольник распределения дискретной случайной величины X, заданной следующим законом распределения:
x 11 15 20 25 30
p 0,4 0,1 0,3 0,1 0,1
13.6 В задаче заданы математическое ожидание а и среднее квадратическое отклонение s нормально распределённой случайной величины X.
Требуется найти:
а) вероятность того, что X примет значение, принадлежащее интервалу (a , b);
б) вероятность того, что абсолютная величина отклонения X-а окажется меньше d .
10.6 Две команды по 20 спортсменов производят жеребьёвку для присвоения номеров участникам соревнований. Два брата входят в состав различных команд. Найти вероятность того, что братья будут участвовать в соревнованиях под одним и тем же номером 18.
11.6. Вероятность появления события в каждом из независимых испытаний равна 0,8. Найти вероятность того, что событие наступит 60 раз в 100 испытаниях.
12.6 Закон распределения дискретной случайной величины можно изобразить графически. С этой целью на прямоугольной системе координат строят точки M1(x1; p1), M2(x2; p2), …, Mn(xn; pn), где xi – возможные значения случайной величины, а pi – соответствующие вероятности, н соединяют их последовательно отрезками прямых. Полученную фигуру называют многоугольником распределения.
В задаче требуется найти: а) математическое ожидание; б) дисперсию; в) среднее квадратическое отклонение дискретной случайной величины X по заданному закону её распределения, заданному таблично (в первой строке таблицы указаны возможные значения, во второй строке – вероятности возможных значений).
Построим многоугольник распределения дискретной случайной величины X, заданной следующим законом распределения:
x 11 15 20 25 30
p 0,4 0,1 0,3 0,1 0,1
13.6 В задаче заданы математическое ожидание а и среднее квадратическое отклонение s нормально распределённой случайной величины X.
Требуется найти:
а) вероятность того, что X примет значение, принадлежащее интервалу (a , b);
б) вероятность того, что абсолютная величина отклонения X-а окажется меньше d .
Дополнительная информация
работа сдана в 2011 году.
Похожие материалы
Контрольная работа по дисциплине: Теория вероятностей и математическая статистика. 4-й семестр.3-й вариант
legion21
: 7 октября 2012
Контрольная работа
По дисциплине: Теория вероятностей и математическая статистика
Вариант: 23 (3)
СибГУТИ 2012 год.
Оценка: Отлично
10.3. Три стрелка произвели залп по цели. Вероятность поражения цели первым стрелком равна 0,7; для второго и третьего стрелков эти вероятности соответственно равны 0,8 и 0,9. Найти вероятность того, что:
а) только один из стрелков поразит цель;
б) только два стрелка поразят цель;
в) все три стрелка поразят цель.
11.3. Среднее число кораблей, заходящих в порт
100 руб.
Контрольная работа по дисциплине «Теория вероятностей и математическая статистика». 3-й семестр. вариант №21
Serebro09
: 16 марта 2015
Задание № 1
В каждой из двух урн содержится 6 черных и 4 белых шара. Из первой урны наудачу извлечен один шар и переложен во вторую. Найти вероятность того, что шар, извлеченный из второй урны, окажется черным.
Задание № 2
Среднее число вызовов, поступающих на АТС в 1 мин, равно четырём. Найти вероятность того, что за 2 мин поступит: а) 6 вызовов; б) менее шести вызовов; в) не менее шести вызовов. Предполагается, что поток вызовов – простейший.
100 руб.
Контрольная работа по дисциплине: Теория вероятности и математическая статистика .3-й семестр. Вариант 9.
58197
: 22 сентября 2013
Задача 10.9
Из аэровокзала отправились 2 автобуса-экспресса к трапам самолётов. Вероятность своевременного прибытия каждого автобуса в аэропорт равна 0,95. Найти вероятность того, что: а) оба автобуса придут вовремя; б) оба автобуса опоздают; в) только один автобус прибудет вовремя; г) хотя бы один автобус прибудет вовремя.
Задача 11.9
Вероятность наступления события в каждом из независимых испытаний равна 0,8. Сколько нужно произвести испытаний, чтобы с вероятност
30 руб.
Контрольная работа по дисциплине: Теория вероятности и математическая статистика. 4-й семестр. Вариант№ 4
Jurgen
: 11 марта 2012
Задача 10.4.
Из трёх орудий произвели залп по цели. Вероятность попадания в цель при одном выстреле из первого орудия равна 0,8; для второго и третьего орудий эти вероятности соответственно равны 0,6 и 0,9.
Найти вероятность того, что:
а) только один снаряд попадёт в цель;
б) только два снаряда попадут в цель;
в) все три снаряда попадут в цель.
Задача 11.4
Среднее число заявок, поступающих на предприятие бытового обслуживания за 1 ч, равно четырём.
Найти вероятность того, что за 3 ч поступит:
150 руб.
Контрольная работа по дисциплине: Теория вероятности и математическая статистика. 4-й семестр. Вариант№ 2
наташ
: 18 января 2012
10.2. В каждой из двух урн содержится 8 черных и 2 белых шара. Из второй урны наудачу извлечен один шар и переложен в первую. Найти вероятность того, что шар, извлеченный из первой урны, окажется черным.
11.2. Среднее число вызовов, поступающих на АТС в 1 мин, равно двум. Найти вероятность того, что за 4 мин поступит: а) 5 вызовов; б) менее пяти вызовов; в) более пяти вызовов. Предполагается, что поток вызовов – простейший.
В задаче 12.2 требуется найти: а) математическое ожидание; б) дисперсию;
50 руб.
Теория вероятностей и математическая статистика (2-й семестр). 7-й вариант
Legeoner13
: 2 января 2015
Билет № 7
1. Математическое ожидание случайной величины, дисперсия и среднее квадратическое отклонение и их свойства. Моменты распределения и другие числовые характеристики одномерной случайной величины
Математическое ожидание
100 руб.
Теория вероятностей и математическая статистика (2-й семестр) 9-й вариант
Legeoner13
: 2 января 2015
10.9
11.9 Вероятность наступления события в каждом из независимых испытаний равна 0,8...
12.9 Требуется найти: а) математическое ожидание; б) дисперсию; в) среднее квадратическое отклонение дискретной случайной величины X....
13.9 Заданы математическое ожидание а и среднее квадратическое отклонение s нормально распределённой случайной величины X.....
100 руб.
Теория вероятностей и математическая статистика. 9-й Вариант. Экзамен. 2-й семестр. ДО
ShockConsumer
: 8 мая 2015
1. Дискретная двумерная случайная величина и её распределение, Числовые характеристики двумерной случайной величины. Ковариация и коэффициент корреляции двумерной случайной величины и их свойства
2. Из урны, где находятся 5 белых и 10 черных шаров случайно вытащены 5 шаров. Какова вероятность того, что среди них будет 2 белых шара?
3. Дискретная случайная величина имеет следующий ряд распределения
Х -100 -50 0 50 100
р 0,04 0,13 0,41 а 0,12
Найти величину a, математическое ожидание и среднее
300 руб.
Другие работы
ММА/ИДО Иностранный язык в профессиональной сфере (ЛТМ) Тест 20 из 20 баллов 2024 год
mosintacd
: 28 июня 2024
ММА/ИДО Иностранный язык в профессиональной сфере (ЛТМ) Тест 20 из 20 баллов 2024 год
Московская международная академия Институт дистанционного образования Тест оценка ОТЛИЧНО
2024 год
Ответы на 20 вопросов
Результат – 100 баллов
С вопросами вы можете ознакомиться до покупки
ВОПРОСЫ:
1. We have … to an agreement
2. Our senses are … a great role in non-verbal communication
3. Saving time at business communication leads to … results in work
4. Conducting negotiations with foreigners we shoul
150 руб.
Задание №2. Методы управления образовательными учреждениями
studypro
: 13 октября 2016
Практическое задание 2
Задание 1. Опишите по одному примеру использования каждого из методов управления в Вашей профессиональной деятельности.
Задание 2. Приняв на работу нового сотрудника, Вы надеялись на более эффективную работу, но в результате разочарованы, так как он не соответствует одному из важнейших качеств менеджера - самодисциплине. Он не обязателен, не собран, не умеет отказывать и т.д.. Но, тем не менее, он отличный профессионал в своей деятельности. Какими методами управления Вы во
200 руб.
Особенности бюджетного финансирования
Aronitue9
: 24 августа 2012
Содержание:
Введение
Теоретические основы бюджетного финансирования
Понятие и сущность бюджетного финансирования
Характеристика основных форм бюджетного финансирования
Анализ бюджетного финансирования образования
Понятие и источники бюджетного финансирования образования
Проблемы бюджетного финансирования образования
Основные направления совершенствования бюджетного финансирования образования
Заключение
Список использованный литературы
Цель курсовой работы – исследовать особенности бюджетного фин
20 руб.
Программирование (часть 1-я). Зачёт. Билет №2
sibsutisru
: 3 сентября 2021
ЗАЧЕТ по дисциплине “Программирование (часть 1)”
Билет 2
Определить значение переменной y после работы следующего фрагмента программы:
a = 3; b = 2 * a – 10; x = 0; y = 2 * b + a;
if ( b > y ) or ( 2 * b < y + a ) ) then begin x = b – y; y = x + 4 end;
if ( a + b < 0 ) and ( y + x > 2 ) ) then begin x = x + y; y = x – 2 end;
200 руб.