Контрольная работа по дисциплине: Математический анализ (2-й семестр). Вариант № 2
Состав работы
|
|
|
|
Работа представляет собой rar архив с файлами (распаковать онлайн), которые открываются в программах:
- Microsoft Word
Описание
Контрольная работа по математическому анализу, содержит в себе следующие задания:
1) Даны функция z=z(x,y), точка A(x0;y0) и вектор a(ax;ay). Найти: 1) grad z в точке А. 2) производную в точке А по направлению вектора a. z=2x^2+3xy+y^2; A(2,1); a=(3;-4)
2)Вычислить с помощью двойного интеграла в полярных координатах площадь фигуры, ограниченной кривой, заданной уравнением в декартовых координатах (a>0).
(x^2+y^2)^2=a^2(4x^2+y^2)
3) Вычислить с помощью тройного интеграла объем тела, ограниченного указанными поверхностями.
z=0; z=9-y^2; x^2+y^2=9
4) Даны векторное поле F=Xi+Yj+Zk и плоскость (p) Ax+By+Cz+D=0, которая совместно с координатными плоскостями образует пирамиду V. Пусть s — основание — контур, ограничивающий s;пирамиды, принадлежащие плоскости (P); l n — нормаль к s, направленная вне пирамиды V. Требуется вычислить:
1) поток векторного поля F через поверхность s в направлении нормали n;
2) циркуляцию векторного поля F по замкнутому контуру l непосредственно и применив теорему Стокса к контуру l и ограниченной им поверхности s с нормалью n;
3) поток векторного поля F через полную поверхность пирамиды V в направлении внешней нормали к ее поверхности непосредственно и применив теорему Остроградского. Сделать чертеж.
Замечаний по работе нет.
1) Даны функция z=z(x,y), точка A(x0;y0) и вектор a(ax;ay). Найти: 1) grad z в точке А. 2) производную в точке А по направлению вектора a. z=2x^2+3xy+y^2; A(2,1); a=(3;-4)
2)Вычислить с помощью двойного интеграла в полярных координатах площадь фигуры, ограниченной кривой, заданной уравнением в декартовых координатах (a>0).
(x^2+y^2)^2=a^2(4x^2+y^2)
3) Вычислить с помощью тройного интеграла объем тела, ограниченного указанными поверхностями.
z=0; z=9-y^2; x^2+y^2=9
4) Даны векторное поле F=Xi+Yj+Zk и плоскость (p) Ax+By+Cz+D=0, которая совместно с координатными плоскостями образует пирамиду V. Пусть s — основание — контур, ограничивающий s;пирамиды, принадлежащие плоскости (P); l n — нормаль к s, направленная вне пирамиды V. Требуется вычислить:
1) поток векторного поля F через поверхность s в направлении нормали n;
2) циркуляцию векторного поля F по замкнутому контуру l непосредственно и применив теорему Стокса к контуру l и ограниченной им поверхности s с нормалью n;
3) поток векторного поля F через полную поверхность пирамиды V в направлении внешней нормали к ее поверхности непосредственно и применив теорему Остроградского. Сделать чертеж.
Замечаний по работе нет.
Похожие материалы
Контрольная работа по дисциплине: Математический анализ. Вариант № 2, 1-й семестр
linkor
: 17 октября 2012
Задача 1.
Найти пределы функций:
Задача 2.
Найти значение производной данной функции в точке х=0:
Задача 3. Провести исследование функций с указанием
а) области определения и точек разрыва; б) экстремумов; с) асимптот.
По полученным данным построить графики функций.
100 руб.
Контрольная работа по дисциплине: Математический анализ. Вариант №8 (2-й семестр)
Roma967
: 26 февраля 2015
Задание 1. Даны функция z=z(x,y), точка A(x0;y0) и вектор a(ax;ay).
Найти:
1) grad z в точке А.
2) производную в точке А по направлению вектора a.
z = ln(3x2 +4y2); A (1;3), a (2;-1)
Задание 2. Вычислить с помощью двойного интеграла в полярных координа-тах площадь фигуры, ограниченной кривой, заданной уравнением в декарто-вых координатах (a>0).
y^6 = a^2∙(y^4 - x^4)
Задача 3. Вычислить с помощью тройного интеграла объем тела, ограни-ченного указанными поверхностями.
z = 0, z = 1 – y^2, x =
450 руб.
Контрольная работа по дисциплине: Математический анализ. Вариант №9. 2-й семестр
sag
: 17 апреля 2014
1. Даны: функция z=z(x,y), точка A(x0;y0) и вектор a(ax;ay).
Найти: 1) grad z в точке А.
2. Вычислить с помощью двойного интеграла в полярных координатах площадь фигуры, ограниченной кривой, заданной уравнением в декартовых координатах (a>0).
3. Вычислить с помощью тройного интеграла объем тела, ограниченного указанными поверхностями.
70 руб.
Контрольная работа по дисциплине: Математический анализ. Вариант №3 (2-й семестр)
xtrail
: 10 февраля 2014
Вариант №3
1. Даны функция z=z(x,y), точка A(x0;y0) и вектор a(ax;ay). Найти: 1) grad z в точке А. 2) производную в точке А по направлению вектора a.
z=ln (5x^(2)+3y^(2)); A (1;1), a (3;2)
2. Вычислить с помощью двойного интеграла в полярных координатах площадь фигуры, ограниченной кривой, заданной уравнением в декартовых координатах (a>0).
(x^(2)+y^(2))^(3)=a^(2)x^(2)(4x^(2)+3y^(2))
3. Вычислить с помощью тройного интеграла объем тела, ограниченного указанными поверхностями. z=0, z=4-x-y, x^(
600 руб.
Контрольная работа по дисциплине: Математический анализ. Вариант №7 (2-й семестр)
xtrail
: 25 января 2014
Задача 1. Даны функция z=z(x,y), точка A(x ;y ) и вектор a(a ;a ).
Найти: 1) grad z в точке А. 2) производную в точке А по направлению вектора a.
z=arcsin(x^(2)/y); A(1;2), a(5;-12)
Задача 2. Вычислить с помощью двойного интеграла в полярных координатах площадь фигуры, ограниченной кривой, заданной уравнением в декартовых координатах (a>0). x^4=a^2*(x^2-3y^2)
Задача 3. Вычислить с помощью тройного интеграла объем тела, ограниченного указанными поверхностями. z=0; x^2+y^2=z; x^2+y^2=4
Задача
370 руб.
Контрольная работа по дисциплине: Математический анализ. Вариант № 5 (2-й семестр)
bertone
: 3 января 2014
1. Даны функция z=z(x,y), точка A(x0;y0) и вектор a(ax;ay). Найти: 1) grad z в точке А. 2) производную в точке А по направлению вектора a.
2. Вычислить с помощью двойного интеграла в полярных координатах площадь фигуры, ограниченной кривой, заданной уравнением в декартовых координатах (a>0).
3. Вычислить с помощью тройного интеграла объем тела, ограниченного указанными поверхностями.
4. Исследовать сходимость числового ряда.
5. Найти интервал сходимости степенного ряда
6. Вычислить определенный
250 руб.
Контрольная работа по дисциплине: Математический анализ. Вариант №1. 2-й семестр
glec
: 29 февраля 2012
1. Даны: функция z=z(x,y), точка A(x0;y0) и вектор a(ax;ay).
Найти: 1) grad z в точке А.
2. Вычислить с помощью двойного интеграла в полярных координатах площадь фигуры, ограниченной кривой, заданной уравнением в декартовых координатах (a>0).
3. Вычислить с помощью тройного интеграла объем тела, ограниченного указанными поверхностями.
70 руб.
Контрольная работа № 1по дисциплине: математический анализ. 1-й семестр
oksana111
: 21 февраля 2013
Задача 1. Найти пределы функций:
Вариант:3.2.
Задача 2. Найти значение производных данных функций в точке x=0:
Вариант:4.2
Задача 3. Провести исследование функций с указанием
а) области определения и точек разрыва; б) экстремумов; с) асимптот.
По полученным данным построить графики функций.
Вариант:5.2
Задача 4. Найти неопределенные интегралы:
Вариант:6.2
Задача 5. Вычислить площади областей, заключённых между линиями:
Вариант: 7.2
100 руб.
Другие работы
Эффективность деятельности фирмы в рыночной экономике
alfFRED
: 9 ноября 2013
Введение
1. Теоретические основы определения эффективной деятельности фирмы в рыночной экономике
1.1 Цели и функции фирмы в рыночной экономике
1.2 Сущность и виды эффективности деятельности фирмы
1.3 Максимизация прибыли фирмы в условиях различных структур рынка
2. Анализ эффективности предприятий банковской деятельности Украины
2.1 Анализ эффективности предприятий банковской деятельности Украины
2.2 Основные принципы и направления повышения эффективности работы предприятий банковской сфе
10 руб.
Контрольная работа по предмету: Направляющие среды электросвязи. Вариант №15.
Vladimirus
: 23 февраля 2016
Задача 1
Для заданного частотного диапазона рассчитать первичные и вторичные параметры симметричной кабельной цепи звездной скрутки, расположенной в первом повиве семичет-верочного кабеля. Построить графики частотной зависимости параметров передачи в задан-ном диапазоне и дать их анализ.
Исходные данные:
изоляция сплошная кордельно-бумажная;
толщина ленты 0,12 мм;
диаметр корделя 0,6 мм;
диапазон частот: f1=10 кГц, f2=20 кГц, f3=120 кГц, f4=180 кГц;
материал жилы - медь;
диаметр жилы d=1,2
270 руб.
Экзамен по дисциплине: Структуры и алгоритмы обработки данных (часть 1). Помогу сделать по Вашей ФИО!
IT-STUDHELP
: 25 декабря 2022
Могу помочь с выполнением контрольной по вашим ФИО, пишите - ego178@mail.ru
=====================================
Задания:
Задания экзаменационного билета одинаковы для всех студентов, однако входные данные (это последовательный набор символов ФИО студента) выбираются индивидуально
1 2 3 4 5 6 7 8 9 10 11 12
Х А У С Т О В Д Е Н И С
1. Для последовательности символов ФИО (используются 12 последовательных букв) показать подробный процесс построения индексного массива, который упорядочивает пос
80 руб.
Планшайба для штанговых глубиннонасосных штанговых установок АУ-140-50, позволяющая использовать крестовину существующей арматуры и установить две колонны насосно-компрессорных труб НКТ-Установки приводов цепных ПЦ 60-18-3-0.5/2.5 для установки одновремен
lesha.nakonechnyy.92@mail.ru
: 24 сентября 2018
Планшайба для штанговых глубиннонасосных штанговых установок АУ-140-50, позволяющая использовать крестовину существующей арматуры и установить две колонны насосно-компрессорных труб НКТ-Установки приводов цепных ПЦ 60-18-3-0.5/2.5 для установки одновременной раздельной эксплуатации
двух пластов: Гайка накидная, Гайка, патрубок, Трубодержатель, Муфта-(Формат Компас-CDW, Autocad-DWG, Adobe-PDF, Picture-Jpeg)-Чертеж-Оборудование для добычи и подготовки нефти и газа-Курсовая работа-Дипломная работа
460 руб.