Контрольная работа по дисциплине: математический анализ. 2-й семестр, 05 вариант
Состав работы
|
|
|
|
Работа представляет собой rar архив с файлами (распаковать онлайн), которые открываются в программах:
- Microsoft Word
Описание
1. Даны функция z=z(x,y), точка A(x0;y0) и вектор a(ax;ay). Найти: 1) grad z в точке А. 2) производную в точке А по направлению вектора a.
z=5x^2+6xy
A(2;1)
a(1;2)
2. Вычислить с помощью двойного интеграла в полярных координатах площадь фигуры, ограниченной кривой, заданной уравнением в декартовых координатах (a>0).
y^6=a^2(3y^2-x^2)(y^2+x^2)
3. Вычислить с помощью тройного интеграла объем тела, ограниченного указанными поверхностями.
z=0
y+z=2
x^2+y^2=4
4. Исследовать сходимость числового ряда.
5. Найти интервал сходимости степенного ряда
6. Вычислить определенный интеграл с точностью до 0.001, разложив подынтегральную функцию в степенной ряд и затем проинтегрировать его почленно.
8. Найти общее решение дифференциального уравнения.
9. Найти частное решение дифференциального уравнения, удовлетворяющее начальным условиям y(0)=y0, y'(0)=y'0
z=5x^2+6xy
A(2;1)
a(1;2)
2. Вычислить с помощью двойного интеграла в полярных координатах площадь фигуры, ограниченной кривой, заданной уравнением в декартовых координатах (a>0).
y^6=a^2(3y^2-x^2)(y^2+x^2)
3. Вычислить с помощью тройного интеграла объем тела, ограниченного указанными поверхностями.
z=0
y+z=2
x^2+y^2=4
4. Исследовать сходимость числового ряда.
5. Найти интервал сходимости степенного ряда
6. Вычислить определенный интеграл с точностью до 0.001, разложив подынтегральную функцию в степенной ряд и затем проинтегрировать его почленно.
8. Найти общее решение дифференциального уравнения.
9. Найти частное решение дифференциального уравнения, удовлетворяющее начальным условиям y(0)=y0, y'(0)=y'0
Дополнительная информация
Год сдачи 2010
СибГУТИ
Вариант 5
Зачет
СибГУТИ
Вариант 5
Зачет
Похожие материалы
Контрольная работа по дисциплине: математический анализ. 1-й семестр, 05 вариант
Tiptop753
: 30 октября 2012
Вариант 5.
Задача 1. Найти пределы функций:
Задача 2. Найти значение производных данных функций в точке x=0:
Задача 3. Провести исследование функции с указанием
а) области определения и точек разрыва;
б) экстремумов;
с) асимптот.
Задача 4. Найти неопределенные интегралы:
Задача 5. Вычислить площади областей, заключённых между линиями:
60 руб.
Контрольная работа по дисциплине: математический анализ. 1-й семестр, 05 вариант
stud82
: 6 октября 2012
Задача 1.
Найти пределы функций:
Задача 2.
Найти значение производных данных функций в точке x=0:
Задача 3.
Провести исследование функций с указанием
а) области определения и точек разрыва;
б) экстремумов;
с) асимптот.
По полученным данным построить графики функций.
Задача 4.
Найти неопределенные интегралы:
Задача 5.
Вычислить площади областей, заключённых между линиями:
100 руб.
Контрольная работа. Математический анализ. 1-й семестр. 05 вариант
odja
: 26 января 2012
Задача 1.
Найти пределы функций:
Задача 2.
Найти значение производных данных функций в точке x=0:
Задача 3.
Провести исследование функций с указанием
а) области определения и точек разрыва;
б) экстремумов;
с) асимптот.
По полученным данным построить графики функций.
Задача 4.
Найти неопределенные интегралы:
Задача 5.
Вычислить площади областей, заключённых между линиями:
59 руб.
Контрольная работа № 1по дисциплине: математический анализ. 1-й семестр
oksana111
: 21 февраля 2013
Задача 1. Найти пределы функций:
Вариант:3.2.
Задача 2. Найти значение производных данных функций в точке x=0:
Вариант:4.2
Задача 3. Провести исследование функций с указанием
а) области определения и точек разрыва; б) экстремумов; с) асимптот.
По полученным данным построить графики функций.
Вариант:5.2
Задача 4. Найти неопределенные интегралы:
Вариант:6.2
Задача 5. Вычислить площади областей, заключённых между линиями:
Вариант: 7.2
100 руб.
Контрольная работа по дисциплине: Математический анализ. Вариант №8 (2-й семестр)
Roma967
: 26 февраля 2015
Задание 1. Даны функция z=z(x,y), точка A(x0;y0) и вектор a(ax;ay).
Найти:
1) grad z в точке А.
2) производную в точке А по направлению вектора a.
z = ln(3x2 +4y2); A (1;3), a (2;-1)
Задание 2. Вычислить с помощью двойного интеграла в полярных координа-тах площадь фигуры, ограниченной кривой, заданной уравнением в декарто-вых координатах (a>0).
y^6 = a^2∙(y^4 - x^4)
Задача 3. Вычислить с помощью тройного интеграла объем тела, ограни-ченного указанными поверхностями.
z = 0, z = 1 – y^2, x =
450 руб.
Контрольная работа по дисциплине: Математический анализ. Вариант №3 (1-й семестр)
Roma967
: 21 ноября 2014
Задача 1. Провести исследование функций с указанием
а) области определения и точек разрыва;
б) экстремумов;
с) асимптот.
По полученным данным построить графики функции.
f(x)=(x^(2)-1)/(x-2)
Задача 2. Найти неопределённые интегралы (см. скрин)
Задача 3. Вычислить площади областей, заключённых между линиями:
у = 4 - x^(2); y = 4х – 1
270 руб.
Контрольная работа по дисциплине: Математический анализ. Вариант №9. 2-й семестр
sag
: 17 апреля 2014
1. Даны: функция z=z(x,y), точка A(x0;y0) и вектор a(ax;ay).
Найти: 1) grad z в точке А.
2. Вычислить с помощью двойного интеграла в полярных координатах площадь фигуры, ограниченной кривой, заданной уравнением в декартовых координатах (a>0).
3. Вычислить с помощью тройного интеграла объем тела, ограниченного указанными поверхностями.
70 руб.
Контрольная работа по дисциплине: Математический анализ. Вариант №3 (2-й семестр)
xtrail
: 10 февраля 2014
Вариант №3
1. Даны функция z=z(x,y), точка A(x0;y0) и вектор a(ax;ay). Найти: 1) grad z в точке А. 2) производную в точке А по направлению вектора a.
z=ln (5x^(2)+3y^(2)); A (1;1), a (3;2)
2. Вычислить с помощью двойного интеграла в полярных координатах площадь фигуры, ограниченной кривой, заданной уравнением в декартовых координатах (a>0).
(x^(2)+y^(2))^(3)=a^(2)x^(2)(4x^(2)+3y^(2))
3. Вычислить с помощью тройного интеграла объем тела, ограниченного указанными поверхностями. z=0, z=4-x-y, x^(
600 руб.
Другие работы
Лабораторные работы №1-5 по дисциплине: Структуры и алгоритмы обработки данных. Вариант 05.
freelancer
: 15 августа 2016
Лабораторная работа № 1
Методы сортировки массивов с квадратичной трудоемкостью.
Цель работы: Освоить методы сортировки массивов с квадратичной трудоемкостью.
Порядок выполнения работы:
1. Разработать процедуры сортировки массива целых чисел методом прямого выбора, методом пузырьковой сортировки и методом шейкерной сортировки (язык программирования Паскаль или Си).
2. Правильность сортировки проверить путем подсчета контрольной суммы и числа серий в массиве.
3. Во время сортировки предусмотреть
50 руб.
Организация производства на предприятии
Мариночка
: 13 октября 2016
1. Сущность организации производства…………………………………..3
2. Задача……………………………………………………………………..12
3. Список используемой литературы……………………………………...13
ЗАДАЧА
Пример. Имеются три последовательно выполняемые ручные операции с нормами времени:t1 = 6 мин / ед.;t2 = 4 мин / ед.;t3 = 5 мин / ед. Каждая операция выполняется на одном рабочем месте. Разбить операции на технологические переходы и перекомпоновать их так, чтобы выполнялся принцип пропорциональности.
150 руб.
Предохранительный механический клапан (КПГ-250)-Чертеж-Оборудование транспорта и хранения нефти и газа-Курсовая работа-Дипломная работа
as.nakonechnyy.92@mail.ru
: 21 июня 2016
Предохранительный механический клапан (КПГ-250)-(Формат Компас-CDW, Autocad-DWG, Adobe-PDF, Picture-Jpeg)-Чертеж-Оборудование транспорта нефти и газа-Курсовая работа-Дипломная работа
485 руб.
Кротодренажна машина на базі Т-150
evelin
: 18 октября 2012
1. Опис конструкції.
2. Розрахунок основних параметрів.
2.1. Параметри ножа і дренера.
2.1.1. Параметри дренера.
2.1.2. Параметри ножа.
2.2. Розрахунок елементів навіски.
2.2.1. Схеми навісок.
2.2.2. Кінематичний розрахунок механізмів причіпки.
2.2.3. Підбір гідроциліндрів.
3. Розділ 3. Розрахунок експлуатаційних параметрів.
3.1. Тяговий розрахунок.
3.2. Розрахунок прохідності.
3.3. Розрахунок продуктивності.
Література.
Кротодренажні машини
Кротовий дренаж займає особливе місце серед усіх вид
1450 руб.