Контрольная работа по дисциплине: математический анализ. 2-й семестр, 05 вариант

Цена:
100 руб.

Состав работы

material.view.file_icon
material.view.file_icon контрольная работа2сем.doc
Работа представляет собой rar архив с файлами (распаковать онлайн), которые открываются в программах:
  • Microsoft Word

Описание

1. Даны функция z=z(x,y), точка A(x0;y0) и вектор a(ax;ay). Найти: 1) grad z в точке А. 2) производную в точке А по направлению вектора a.
z=5x^2+6xy
A(2;1)
a(1;2)
2. Вычислить с помощью двойного интеграла в полярных координатах площадь фигуры, ограниченной кривой, заданной уравнением в декартовых координатах (a>0).
y^6=a^2(3y^2-x^2)(y^2+x^2)
3. Вычислить с помощью тройного интеграла объем тела, ограниченного указанными поверхностями.
z=0
y+z=2
x^2+y^2=4
4. Исследовать сходимость числового ряда.
5. Найти интервал сходимости степенного ряда
6. Вычислить определенный интеграл с точностью до 0.001, разложив подынтегральную функцию в степенной ряд и затем проинтегрировать его почленно.
8. Найти общее решение дифференциального уравнения.
9. Найти частное решение дифференциального уравнения, удовлетворяющее начальным условиям y(0)=y0, y'(0)=y'0

Дополнительная информация

Год сдачи 2010
СибГУТИ
Вариант 5
Зачет
Контрольная работа по дисциплине: математический анализ. 1-й семестр, 05 вариант
Вариант 5. Задача 1. Найти пределы функций: Задача 2. Найти значение производных данных функций в точке x=0: Задача 3. Провести исследование функции с указанием а) области определения и точек разрыва; б) экстремумов; с) асимптот. Задача 4. Найти неопределенные интегралы: Задача 5. Вычислить площади областей, заключённых между линиями:
User Tiptop753 : 30 октября 2012
60 руб.
Контрольная работа по дисциплине: математический анализ. 1-й семестр, 05 вариант
Задача 1. Найти пределы функций: Задача 2. Найти значение производных данных функций в точке x=0: Задача 3. Провести исследование функций с указанием а) области определения и точек разрыва; б) экстремумов; с) асимптот. По полученным данным построить графики функций. Задача 4. Найти неопределенные интегралы: Задача 5. Вычислить площади областей, заключённых между линиями:
User stud82 : 6 октября 2012
100 руб.
Контрольная работа. Математический анализ. 1-й семестр. 05 вариант
Задача 1. Найти пределы функций: Задача 2. Найти значение производных данных функций в точке x=0: Задача 3. Провести исследование функций с указанием а) области определения и точек разрыва; б) экстремумов; с) асимптот. По полученным данным построить графики функций. Задача 4. Найти неопределенные интегралы: Задача 5. Вычислить площади областей, заключённых между линиями:
User odja : 26 января 2012
59 руб.
Контрольная работа № 1по дисциплине: математический анализ. 1-й семестр
Задача 1. Найти пределы функций: Вариант:3.2. Задача 2. Найти значение производных данных функций в точке x=0: Вариант:4.2 Задача 3. Провести исследование функций с указанием а) области определения и точек разрыва; б) экстремумов; с) асимптот. По полученным данным построить графики функций. Вариант:5.2 Задача 4. Найти неопределенные интегралы: Вариант:6.2 Задача 5. Вычислить площади областей, заключённых между линиями: Вариант: 7.2
User oksana111 : 21 февраля 2013
100 руб.
Контрольная работа по дисциплине: Математический анализ. Вариант №8 (2-й семестр)
Задание 1. Даны функция z=z(x,y), точка A(x0;y0) и вектор a(ax;ay). Найти: 1) grad z в точке А. 2) производную в точке А по направлению вектора a. z = ln(3x2 +4y2); A (1;3), a (2;-1) Задание 2. Вычислить с помощью двойного интеграла в полярных координа-тах площадь фигуры, ограниченной кривой, заданной уравнением в декарто-вых координатах (a>0). y^6 = a^2∙(y^4 - x^4) Задача 3. Вычислить с помощью тройного интеграла объем тела, ограни-ченного указанными поверхностями. z = 0, z = 1 – y^2, x =
User Roma967 : 26 февраля 2015
450 руб.
promo
Контрольная работа по дисциплине: Математический анализ. Вариант №3 (1-й семестр)
Задача 1. Провести исследование функций с указанием а) области определения и точек разрыва; б) экстремумов; с) асимптот. По полученным данным построить графики функции. f(x)=(x^(2)-1)/(x-2) Задача 2. Найти неопределённые интегралы (см. скрин) Задача 3. Вычислить площади областей, заключённых между линиями: у = 4 - x^(2); y = 4х – 1
User Roma967 : 21 ноября 2014
270 руб.
Контрольная работа по дисциплине: Математический анализ. Вариант №3 (1-й семестр)
Контрольная работа по дисциплине: Математический анализ. Вариант №9. 2-й семестр
1. Даны: функция z=z(x,y), точка A(x0;y0) и вектор a(ax;ay). Найти: 1) grad z в точке А. 2. Вычислить с помощью двойного интеграла в полярных координатах площадь фигуры, ограниченной кривой, заданной уравнением в декартовых координатах (a>0). 3. Вычислить с помощью тройного интеграла объем тела, ограниченного указанными поверхностями.
User sag : 17 апреля 2014
70 руб.
Контрольная работа по дисциплине: Математический анализ. Вариант №3 (2-й семестр)
Вариант №3 1. Даны функция z=z(x,y), точка A(x0;y0) и вектор a(ax;ay). Найти: 1) grad z в точке А. 2) производную в точке А по направлению вектора a. z=ln (5x^(2)+3y^(2)); A (1;1), a (3;2) 2. Вычислить с помощью двойного интеграла в полярных координатах площадь фигуры, ограниченной кривой, заданной уравнением в декартовых координатах (a>0). (x^(2)+y^(2))^(3)=a^(2)x^(2)(4x^(2)+3y^(2)) 3. Вычислить с помощью тройного интеграла объем тела, ограниченного указанными поверхностями. z=0, z=4-x-y, x^(
User xtrail : 10 февраля 2014
600 руб.
Теория вероятностей и математическая статистика. Вариант №3
Вариант №03 Задание 1. Комбинаторика Сколько 5-ти буквенных слов можно составить из букв слова ФУРАЖ? Задание 2. Основные теоремы. Изделие, изготовленное первым станком-автоматом, является бракованным с вероятностью 0,01, для второго станка эта вероятность равна 0,03. Четверть всех изделий изготовлены первым станком, остальные – вторым. Найти вероятность брака произвольно взятого изделия Задание 3. Случайные величины Найти математическое ожидание, дисперсию и среднее квадратическое отклонение
User CrashOv : 20 февраля 2020
350 руб.
Теория вероятностей и математическая статистика. Вариант №3
Контрольная работа по дисциплине: "Основы передачи дискретных сообщений". Вариант №3
Задача № 1 Для дискретного симметричного канала без памяти вероятность ошибочного приема элемента равна . Рассчитать вероятности поражения кодовой комбинации длина , ошибкой кратности . Задача № 2 Определить вероятность неправильного приема кодовой комбинации , если для передачи используется код с кодовым расстоянием в режиме исправления ошибок. Длина кодовой комбинации , из первой задачи. Задача №3 Определить скорость передачи информации с решающей обратной связью и ожиданием (РОС – О
User wowan1190 : 10 января 2014
70 руб.
Зачет по Линейной алгебре, Билет №13.
1. Системы координат на плоскости и связь между ними 2. Решить матричное уравнение: 3. Найти уравнение плоскости, проходящей через прямые
User sasha92 : 12 февраля 2016
130 руб.
Основы построения телекоммуникационных систем и сетей. Экзамен.
Основы построения телекоммуникационных систем и сетей. Экзаменационная работа. Билет 19. 1.Определить требуемую полосу пропускания канала для передачи сигнала от МСП-ЧРК типа К-300, преобразованного в цифровой сигнал кодом NRZ. Так как спектр кода NRZ имеет следующий вид: ... 2.Привести спектр сигнала на выходе частотного модулятора , если на его вход подается сигнал от МСП-ЧРК типа К-1020, девиация частоты на канал 200 кГц. Изобразим спектр сигнала на выходе частотного модулятора ... 3.Найти мо
User sibgutimts : 27 ноября 2010
300 руб.
Основы построения телекоммуникационных систем и сетей. Экзамен.
up Наверх