Контрольная работа по дисциплине: математический анализ. 2-й семестр, 05 вариант
Состав работы
|
|
|
|
Работа представляет собой rar архив с файлами (распаковать онлайн), которые открываются в программах:
- Microsoft Word
Описание
1. Даны функция z=z(x,y), точка A(x0;y0) и вектор a(ax;ay). Найти: 1) grad z в точке А. 2) производную в точке А по направлению вектора a.
z=5x^2+6xy
A(2;1)
a(1;2)
2. Вычислить с помощью двойного интеграла в полярных координатах площадь фигуры, ограниченной кривой, заданной уравнением в декартовых координатах (a>0).
y^6=a^2(3y^2-x^2)(y^2+x^2)
3. Вычислить с помощью тройного интеграла объем тела, ограниченного указанными поверхностями.
z=0
y+z=2
x^2+y^2=4
4. Исследовать сходимость числового ряда.
5. Найти интервал сходимости степенного ряда
6. Вычислить определенный интеграл с точностью до 0.001, разложив подынтегральную функцию в степенной ряд и затем проинтегрировать его почленно.
8. Найти общее решение дифференциального уравнения.
9. Найти частное решение дифференциального уравнения, удовлетворяющее начальным условиям y(0)=y0, y'(0)=y'0
z=5x^2+6xy
A(2;1)
a(1;2)
2. Вычислить с помощью двойного интеграла в полярных координатах площадь фигуры, ограниченной кривой, заданной уравнением в декартовых координатах (a>0).
y^6=a^2(3y^2-x^2)(y^2+x^2)
3. Вычислить с помощью тройного интеграла объем тела, ограниченного указанными поверхностями.
z=0
y+z=2
x^2+y^2=4
4. Исследовать сходимость числового ряда.
5. Найти интервал сходимости степенного ряда
6. Вычислить определенный интеграл с точностью до 0.001, разложив подынтегральную функцию в степенной ряд и затем проинтегрировать его почленно.
8. Найти общее решение дифференциального уравнения.
9. Найти частное решение дифференциального уравнения, удовлетворяющее начальным условиям y(0)=y0, y'(0)=y'0
Дополнительная информация
Год сдачи 2010
СибГУТИ
Вариант 5
Зачет
СибГУТИ
Вариант 5
Зачет
Похожие материалы
Контрольная работа по дисциплине: математический анализ. 1-й семестр, 05 вариант
Tiptop753
: 30 октября 2012
Вариант 5.
Задача 1. Найти пределы функций:
Задача 2. Найти значение производных данных функций в точке x=0:
Задача 3. Провести исследование функции с указанием
а) области определения и точек разрыва;
б) экстремумов;
с) асимптот.
Задача 4. Найти неопределенные интегралы:
Задача 5. Вычислить площади областей, заключённых между линиями:
60 руб.
Контрольная работа по дисциплине: математический анализ. 1-й семестр, 05 вариант
stud82
: 6 октября 2012
Задача 1.
Найти пределы функций:
Задача 2.
Найти значение производных данных функций в точке x=0:
Задача 3.
Провести исследование функций с указанием
а) области определения и точек разрыва;
б) экстремумов;
с) асимптот.
По полученным данным построить графики функций.
Задача 4.
Найти неопределенные интегралы:
Задача 5.
Вычислить площади областей, заключённых между линиями:
100 руб.
Контрольная работа. Математический анализ. 1-й семестр. 05 вариант
odja
: 26 января 2012
Задача 1.
Найти пределы функций:
Задача 2.
Найти значение производных данных функций в точке x=0:
Задача 3.
Провести исследование функций с указанием
а) области определения и точек разрыва;
б) экстремумов;
с) асимптот.
По полученным данным построить графики функций.
Задача 4.
Найти неопределенные интегралы:
Задача 5.
Вычислить площади областей, заключённых между линиями:
59 руб.
Контрольная работа № 1по дисциплине: математический анализ. 1-й семестр
oksana111
: 21 февраля 2013
Задача 1. Найти пределы функций:
Вариант:3.2.
Задача 2. Найти значение производных данных функций в точке x=0:
Вариант:4.2
Задача 3. Провести исследование функций с указанием
а) области определения и точек разрыва; б) экстремумов; с) асимптот.
По полученным данным построить графики функций.
Вариант:5.2
Задача 4. Найти неопределенные интегралы:
Вариант:6.2
Задача 5. Вычислить площади областей, заключённых между линиями:
Вариант: 7.2
100 руб.
Контрольная работа по дисциплине: Математический анализ. Вариант №8 (2-й семестр)
Roma967
: 26 февраля 2015
Задание 1. Даны функция z=z(x,y), точка A(x0;y0) и вектор a(ax;ay).
Найти:
1) grad z в точке А.
2) производную в точке А по направлению вектора a.
z = ln(3x2 +4y2); A (1;3), a (2;-1)
Задание 2. Вычислить с помощью двойного интеграла в полярных координа-тах площадь фигуры, ограниченной кривой, заданной уравнением в декарто-вых координатах (a>0).
y^6 = a^2∙(y^4 - x^4)
Задача 3. Вычислить с помощью тройного интеграла объем тела, ограни-ченного указанными поверхностями.
z = 0, z = 1 – y^2, x =
450 руб.
Контрольная работа по дисциплине: Математический анализ. Вариант №3 (1-й семестр)
Roma967
: 21 ноября 2014
Задача 1. Провести исследование функций с указанием
а) области определения и точек разрыва;
б) экстремумов;
с) асимптот.
По полученным данным построить графики функции.
f(x)=(x^(2)-1)/(x-2)
Задача 2. Найти неопределённые интегралы (см. скрин)
Задача 3. Вычислить площади областей, заключённых между линиями:
у = 4 - x^(2); y = 4х – 1
270 руб.
Контрольная работа по дисциплине: Математический анализ. Вариант №9. 2-й семестр
sag
: 17 апреля 2014
1. Даны: функция z=z(x,y), точка A(x0;y0) и вектор a(ax;ay).
Найти: 1) grad z в точке А.
2. Вычислить с помощью двойного интеграла в полярных координатах площадь фигуры, ограниченной кривой, заданной уравнением в декартовых координатах (a>0).
3. Вычислить с помощью тройного интеграла объем тела, ограниченного указанными поверхностями.
70 руб.
Контрольная работа по дисциплине: Математический анализ. Вариант №3 (2-й семестр)
xtrail
: 10 февраля 2014
Вариант №3
1. Даны функция z=z(x,y), точка A(x0;y0) и вектор a(ax;ay). Найти: 1) grad z в точке А. 2) производную в точке А по направлению вектора a.
z=ln (5x^(2)+3y^(2)); A (1;1), a (3;2)
2. Вычислить с помощью двойного интеграла в полярных координатах площадь фигуры, ограниченной кривой, заданной уравнением в декартовых координатах (a>0).
(x^(2)+y^(2))^(3)=a^(2)x^(2)(4x^(2)+3y^(2))
3. Вычислить с помощью тройного интеграла объем тела, ограниченного указанными поверхностями. z=0, z=4-x-y, x^(
600 руб.
Другие работы
Теория вероятностей и математическая статистика. Вариант №3
CrashOv
: 20 февраля 2020
Вариант №03
Задание 1. Комбинаторика
Сколько 5-ти буквенных слов можно составить из букв слова ФУРАЖ?
Задание 2. Основные теоремы.
Изделие, изготовленное первым станком-автоматом, является бракованным с вероятностью 0,01, для второго станка эта вероятность равна 0,03. Четверть всех изделий изготовлены первым станком, остальные – вторым. Найти вероятность брака произвольно взятого изделия
Задание 3. Случайные величины
Найти математическое ожидание, дисперсию и среднее квадратическое отклонение
350 руб.
Контрольная работа по дисциплине: "Основы передачи дискретных сообщений". Вариант №3
wowan1190
: 10 января 2014
Задача № 1
Для дискретного симметричного канала без памяти вероятность ошибочного приема элемента равна . Рассчитать вероятности поражения кодовой комбинации длина , ошибкой кратности .
Задача № 2
Определить вероятность неправильного приема кодовой комбинации , если для передачи используется код с кодовым расстоянием в режиме исправления ошибок. Длина кодовой комбинации , из первой задачи.
Задача №3
Определить скорость передачи информации с решающей обратной связью и ожиданием (РОС – О
70 руб.
Зачет по Линейной алгебре, Билет №13.
sasha92
: 12 февраля 2016
1. Системы координат на плоскости и связь между ними
2. Решить матричное уравнение:
3. Найти уравнение плоскости, проходящей через прямые
130 руб.
Основы построения телекоммуникационных систем и сетей. Экзамен.
sibgutimts
: 27 ноября 2010
Основы построения телекоммуникационных систем и сетей.
Экзаменационная работа. Билет 19.
1.Определить требуемую полосу пропускания канала для передачи сигнала от МСП-ЧРК типа К-300, преобразованного в цифровой сигнал кодом NRZ.
Так как спектр кода NRZ имеет следующий вид: ...
2.Привести спектр сигнала на выходе частотного модулятора , если на его вход подается сигнал от МСП-ЧРК типа К-1020, девиация частоты на канал 200 кГц.
Изобразим спектр сигнала на выходе частотного модулятора ...
3.Найти мо
300 руб.