Контрольная работа по дисциплине: Теория вероятностей и математическая статистика
Состав работы
|
|
|
|
Работа представляет собой rar архив с файлами (распаковать онлайн), которые открываются в программах:
- Microsoft Word
Описание
семестр 3 вариант 1
10.1. В каждой из двух урн содержится 6 черных и 4 белых шара. Из первой урны наудачу извлечен один шар и переложен во вторую. Найти вероятность того, что шар, извлеченный из второй урны, окажется черным.
11.1. Среднее число вызовов, поступающих на АТС в 1 мин, равно четырём. Найти вероятность того, что за 2 мин поступит: а) 6 вызовов; б) менее шести вызовов; в) не менее шести вызовов. Предполагается, что поток вызовов – простейший.
12.1. Требуется найти: а) математическое ожидание; б) дисперсию; в) среднее квадратичное отклонение дискретной случайной величины X по заданному закону её распределения, заданному таблично (в первой строке таблицы указаны возможные значения, во второй строке – вероятности возможных значений).
13.1 Заданы математическое ожидание а и среднее квадратичное отклонение s нормально распределённой случайной величины X. Требуется найти: а) вероятность того, что X примет значение, принадлежащее интервалу (a , b); б) вероятность того, что абсолютная величина отклонения X-а окажется меньше d .
10.1. В каждой из двух урн содержится 6 черных и 4 белых шара. Из первой урны наудачу извлечен один шар и переложен во вторую. Найти вероятность того, что шар, извлеченный из второй урны, окажется черным.
11.1. Среднее число вызовов, поступающих на АТС в 1 мин, равно четырём. Найти вероятность того, что за 2 мин поступит: а) 6 вызовов; б) менее шести вызовов; в) не менее шести вызовов. Предполагается, что поток вызовов – простейший.
12.1. Требуется найти: а) математическое ожидание; б) дисперсию; в) среднее квадратичное отклонение дискретной случайной величины X по заданному закону её распределения, заданному таблично (в первой строке таблицы указаны возможные значения, во второй строке – вероятности возможных значений).
13.1 Заданы математическое ожидание а и среднее квадратичное отклонение s нормально распределённой случайной величины X. Требуется найти: а) вероятность того, что X примет значение, принадлежащее интервалу (a , b); б) вероятность того, что абсолютная величина отклонения X-а окажется меньше d .
Похожие материалы
Контрольная работа по дисциплине: Теория вероятностей и математическая статистика
dimajio
: 29 мая 2017
Задачи 10-11. Тема: случайные события
10.7. Два стрелка произвели по одному выстрелу по мишени. Вероятность поражения мишени каждым из стрелков равна 0,9. Найти вероятность того, что: а) оба стрелка поразят мишень; б) оба стрелка промахнутся; в) только один стрелок поразит мишень; г) хотя бы один из стрелков поразит мишень.
11.7. Вероятность появления события в каждом из независимых испытаний равна 0,2. Найти вероятность того, что в 100 испытаниях событие появится не менее 20 и не более 30 раз.
65 руб.
Контрольная работа по дисциплине: Теория вероятностей и математическая статистика
gukin1
: 3 апреля 2017
1. Пять человек рассаживаются на скамейке в случайном порядке. Среди них есть два брата. Найти вероятность того, что братья займут крайние места.
2. В команде 12 спортсменов. Из них первые четверо выполняют упражнение на «отлично» с вероятностью 0,8, трое других – с вероятностью 0,6, а остальные – с вероятностью 0,2. Случайно выбранный спортсмен из этой группы выполнил упражнение на «отлично». Какова вероятность, что он из первой четверки?
3. В оперативную часть поступает в среднем одно сообщ
100 руб.
Контрольная работа по дисциплине: "Теория вероятностей и математическая статистика"
Ivanych
: 19 марта 2017
Вариант №3
1. В семизначном телефонном номере неизвестны три последние цифры. Какова вероятность, что все они различны?
2. В первой урне находится два белых и четыре черных шара, во второй черных – четыре, а белый один
3.Вероятность наступления события в каждом из одинаковых и независимых испытаний равна 0,2.
200 руб.
Контрольная работа по дисциплине: «Теория вероятностей и математическая статистика»
agent7788w
: 10 февраля 2016
Вариант № 3
1. В семизначном телефонном номере неизвестны три последние цифры. Какова вероятность, что все они различны?
2. В первой урне находится два белых и четыре черных шара, во второй черных – четыре, а белый один. Из первой урны во вторую переложен один шар и, после перемешивания, из второй урны вытащен шар, который оказался черным. Какова вероятность, что во вторую урну был добавлен черный шар?
3. Вероятность наступления события в каждом из одинаковых и независимых испытаний равна
600 руб.
Контрольная работа по дисциплине: Теория вероятностей и математическая статистика
lebed-e-va
: 28 апреля 2015
Задача 10.4.
Из трёх орудий произвели залп по цели. Вероятность попадания в цель при одном выстреле из первого орудия равна 0,8; для второго и третьего орудий эти вероятности соответственно равны 0,6 и 0,9. Найти вероятность того, что: а) только один снаряд попадёт в цель; б) только два снаряда попадут в цель; в) все три снаряда попадут в цель.
Задача 11.4.
Среднее число заявок, поступающих на предприятие бытового обслуживания за 1 ч, равно четырём. Найти вероятность того, что за 3 ч поступит:
150 руб.
Контрольная работа по дисциплине: Теория вероятностей и математическая статистика
pvv1962
: 4 апреля 2015
I. Задачи 521-530.
II. Задачи № 541-550.
III. Задачи 551-560.
75 руб.
Контрольная работа по дисциплине: «Теория вероятности и математическая статистика»
nvm1604
: 22 марта 2015
10.9. Из аэровокзала отправились 2 автобуса-экспресса к трапам самолётов. Вероятность своевременного прибытия каждого автобуса в аэропорт равна 0,95. Найти вероятность того, что: а) оба автобуса придут вовремя; б) оба автобуса опоздают; в) только один автобус прибудет вовремя; г) хотя бы один автобус прибудет вовремя.
50 руб.
Контрольная работа по дисциплине: Теория вероятности и математическая статистика.
Amor
: 4 октября 2013
10.1. В каждой из двух урн содержится 6 черных и 4 белых шара. Из первой урны наудачу извлечен один шар и переложен во вторую. Найти вероятность того, что шар, извлеченный из второй урны, окажется черным.
10.2. В каждой из двух урн содержится 8 черных и 2 белых шара. Из второй урны наудачу извлечен один шар и переложен в первую. Найти вероятность того, что шар, извлеченный из первой урны, окажется черным.
10.3. Три стрелка произвели залп по цели. Вероятность поражения цели первым стрелком равн
370 руб.
Другие работы
Контрольная работа №1 по дисциплине: “Приборы СВЧ и ОД”. Вариант № 7
Помощь студентам СибГУТИ ДО
: 5 февраля 2013
В двухрезонаторном клистроном усилителе, работавшем в оптимальном режиме, изменили один из параметров. Требуется определить, как надо изменить другой параметр, чтобы получить ту же выходную мощность или как при этом изменится режим усилителя.
n=7. Увеличили расстояние между сетками первого резонатора от d1 до d1(1+0,1m) и во столько же раз уменьшили зазор между сетками второго резонатора. Во сколько раз изменится выходная мощность. Если первоначально углы пролета в резонаторах равнялись p /2?
За
200 руб.
Контрольная работа по дисциплине: Устройства и системы оптической связи. Вариант 15
Roma967
: 31 марта 2023
Задача №1
Определить затухание, дисперсию, полосу пропускания и максимальную скорость передачи двоичных импульсов в волоконно-оптической системе с длиной секции L (км), километрическим затуханием a (дБ/км) на длине волны излучения передатчика Л0 (мкм), ширине спектра излучения DЛ0,5 на уровне половины максимальной мощности излучения.
Данные для задачи приведены в табл.1.1 и 1.2.
Таблица 1.1
Предпоследняя цифра номера пароля: 1
Длина оптической секции, км: 74
Таблица 1.2
Последняя цифра номера
600 руб.
Насос масляный - 01.015
.Инженер.
: 5 декабря 2020
В.А. Леонова и О.П. Галанина. Альбом сборочных чертежей для деталирования и чтения. Задание 01.015. Насос масляный. Деталирование.
Масляный насос предназначен для подачи масла в смазочную систему агрегата или машины.
Данный насос — шестеренного типа, с всасывающей и нагнетательной камерами. При вращении зубчатых колес в направлении, указанном на чертеже стрелками, масло из всасывающей камеры захватывается свободными впадинами зубьев колес, переносится вдоль стенок корпуса и в зоне зацепления вы
450 руб.
Лабораторная работа № 5 по дисциплине: Дискретная математика. Вариант № 3
alexxxxxxxela
: 5 января 2014
Лабораторная работа № 5
Поиск компонент связности графа
Граф задан его матрицей смежности. Требуется определить количество компонент связности этого графа (по материалам главы 3, п. 3.2.3 и 3.4). При этом должны быть конкретно перечислены вершины, входящие в каждую компоненту связности.
Выбор алгоритма поиска компонент связности – произвольный. Например, приветствуется использование одного из видов обхода (поиск в глубину или поиск в ширину по материалам п. 3.4.3).
Пользователю должна быть пред
70 руб.