Курсовая работа по дисциплине: «Теория телетрафика». Вариант № 4
Состав работы
|
|
|
|
Работа представляет собой rar архив с файлами (распаковать онлайн), которые открываются в программах:
- Microsoft Word
Описание
Задача 1.
На коммутационную систему поступает поток вызовов, создающий нагрузку Y эрланг. Определить вероятности поступления ровно i вызовов Pi (i=0, 1, 2 ...N) при примитивном потоке от N источников и Pi ( i=0,1, 2...j...) при простейшем потоке вызовов. Построить кривые распределения вероятностей Pi =f ( i ) и произвести сравнение полученных результатов. Величины Y и N приведены в табл. 1.
Задача 2.
Пучок ИШК координатной станции типа АТСК -Y обслуживает абонентов одного блока АИ. Определить поступающую на этот пучок нагрузку Y, если число абонентов, включенных в блок, N=1000, среднее число вызовов от одного абонента С, среднее время разговора Т , доля вызовов закончившихся разговором Pр . значения с, Т и Pр приведены в таблице 2, нумерация на сети пяти- или шестизначная.
Задача 3.
Полнодоступный пучок из V линий обслуживает поток вызовов. Определить пропускную способность пучка, т.е. нагрузку Y , которая может поступать на этот пучок при заданной величине потерь по вызовам Pв в случае простейшего потока и примитивного потока от N1 и N2 источников. Значения V, Pв, N1 и N2 приведены в таблице 3. По результатам расчета сделать выводы.
Задача 4.
На коммутационный блок координатной станции типа АТСК поступает простейший поток вызовов, который создает нагрузку Yб эрланг при средней длительности занятия входа блока tб . Блок обслуживается одним маркером, работающим в режиме с условными потерями при постоянной длительности занятия tм. Блок обслуживается одним маркером, работающем в режиме с условными потерями при постоянной длительности занятия tм .
Задержанные вызовы обслуживаются в случайном порядке независимо от очередности поступления.
Определить вероятность ожидания свыше допустимого времени tд и среднее время ожидания задержанных вызовов tз . Значения Yб , tб, tм и tд приведены в табл. 4.
Задача 5.
Нагрузка, поступающая на ступень ГИ АТСК, обслуживается в данном направлении пучком линий с доступностью Kвq при потерях P=0,005. Нагрузка на один вход ступени а, нагрузка в направлении y . Определить методом эффективной доступности емкость пучка V при установке на ступени блоков 60х80х400 и 80х120х400. Сравнить полученные результаты. Величины Kвq , y, a приведены в таблице 5.
Задача 6.
На вход ступени ГИ АТС поступает нагрузка по двум пучкам линий, математическое ожидание которой Y1 и Y2. На выходе ступени объединенная нагрузка распределяется по направлениям пропорционально коэффициентам Ki . Определить расчетное значение нагрузки каждого направления и относительное отклонение расчетного значения нагрузки от ее математического ожидания. По результатам расчета сделать вывод. Исходные данные приведены в табл.6.
На коммутационную систему поступает поток вызовов, создающий нагрузку Y эрланг. Определить вероятности поступления ровно i вызовов Pi (i=0, 1, 2 ...N) при примитивном потоке от N источников и Pi ( i=0,1, 2...j...) при простейшем потоке вызовов. Построить кривые распределения вероятностей Pi =f ( i ) и произвести сравнение полученных результатов. Величины Y и N приведены в табл. 1.
Задача 2.
Пучок ИШК координатной станции типа АТСК -Y обслуживает абонентов одного блока АИ. Определить поступающую на этот пучок нагрузку Y, если число абонентов, включенных в блок, N=1000, среднее число вызовов от одного абонента С, среднее время разговора Т , доля вызовов закончившихся разговором Pр . значения с, Т и Pр приведены в таблице 2, нумерация на сети пяти- или шестизначная.
Задача 3.
Полнодоступный пучок из V линий обслуживает поток вызовов. Определить пропускную способность пучка, т.е. нагрузку Y , которая может поступать на этот пучок при заданной величине потерь по вызовам Pв в случае простейшего потока и примитивного потока от N1 и N2 источников. Значения V, Pв, N1 и N2 приведены в таблице 3. По результатам расчета сделать выводы.
Задача 4.
На коммутационный блок координатной станции типа АТСК поступает простейший поток вызовов, который создает нагрузку Yб эрланг при средней длительности занятия входа блока tб . Блок обслуживается одним маркером, работающим в режиме с условными потерями при постоянной длительности занятия tм. Блок обслуживается одним маркером, работающем в режиме с условными потерями при постоянной длительности занятия tм .
Задержанные вызовы обслуживаются в случайном порядке независимо от очередности поступления.
Определить вероятность ожидания свыше допустимого времени tд и среднее время ожидания задержанных вызовов tз . Значения Yб , tб, tм и tд приведены в табл. 4.
Задача 5.
Нагрузка, поступающая на ступень ГИ АТСК, обслуживается в данном направлении пучком линий с доступностью Kвq при потерях P=0,005. Нагрузка на один вход ступени а, нагрузка в направлении y . Определить методом эффективной доступности емкость пучка V при установке на ступени блоков 60х80х400 и 80х120х400. Сравнить полученные результаты. Величины Kвq , y, a приведены в таблице 5.
Задача 6.
На вход ступени ГИ АТС поступает нагрузка по двум пучкам линий, математическое ожидание которой Y1 и Y2. На выходе ступени объединенная нагрузка распределяется по направлениям пропорционально коэффициентам Ki . Определить расчетное значение нагрузки каждого направления и относительное отклонение расчетного значения нагрузки от ее математического ожидания. По результатам расчета сделать вывод. Исходные данные приведены в табл.6.
Дополнительная информация
Работа сдана в 2012г.
Похожие материалы
Курсовая работа по дисциплине: «Теория телетрафика». Вариант №4
Помощь студентам СибГУТИ ДО
: 28 октября 2014
1. Задача №1
На коммутационную систему поступает поток вызовов, создающий нагрузку Y=3,6 эрланг. Определить вероятности поступления ровно i вызовов Pi (i=0, 1, 2 ...N) при примитивном потоке от N=9 источников и Pi ( i=0,1, 2...j...) при простейшем потоке вызовов. Построить кривые распределения вероятностей Pi =f ( i ) и произвести сравнение полученных результатов.
2. Задача №2
Пучок ИШК координатной станции типа АТСК -Y обслуживает абонентов одного блока АИ. Определить поступающую на
450 руб.
Курсовая работа по дисциплине «Теория телетрафика»
bunny207
: 9 октября 2019
7 задач
Задачи №1
На однолинейную СМО поступает простейший поток вызовов с параметром 4 выз/час. Вызовы обслуживаются с ожиданием. Время обслуживания вызовов распределено: а) показательно со средним значением 80 c; модель обслуживания М/М/1; б) постоянно с h=t ; модель обслуживания М/Д/1. Допустимое время ожидания начала обслуживания - 160 с.
Определить:
1. для модели М/М/1 и М/Д/1 - функцию распределения времени ожидания начала обслуживания;
2. среднее время начала обслуживания для любо
470 руб.
Курсовая работа по дисциплине: «Теория телетрафика»
GKorshunov
: 3 ноября 2012
Задача 1.
На коммутационную систему поступает поток вызовов, создающий нагрузку Y эрланг. Определить вероятности поступления ровно i вызовов Pi (i=0,1,2,…N) при примитивном потоке от N источников и Pi (i=0,1,2,…j…) при простейшем потоке вызовов. Построить кривые распределения вероятностей Pi=f(i) и произвести сравнение полученных результатов. Величины Y и N приведены в таблице 1 (1): Таблица 1
Y, эрл N
4,5 9
Задача 2.
Пучок ИШК координатной ст
250 руб.
Теория телетрафика. Вариант №4
IT-STUDHELP
: 13 июня 2021
Вариант No4
Задачи:
1. На однолинейную СМО поступает простейший поток вызовов с параметром 39 выз/час. Вызовы обслуживаются с ожиданием. Время обслуживания вызовов распределено:
а) показательно со средним значением 80 c; модель обслуживания М/М/1;
б) постоянно с h=t ; модель обслуживания М/Д/1.
Допустимое время ожидания начала обслуживания - 160 с.
Определить:
для модели М/М/1 и М/Д/1 - функцию распределения времени ожидания начала обслуживания;
среднее время начала обслуживания дл
600 руб.
Курсовая работа по дисциплине «Теория телетрафика» 4-й вариант
ladyChery
: 20 апреля 2013
Задача 1. На коммутационную систему поступает поток вызовов, создающий нагрузку Y = 3,6 Эрланг. Определить вероятности поступления ровно i вызовов Pi (i = 0, 1, 2…N) при примитивном потоке от N = 9 источников и Pi (i = 0, 1, 2…j…) при простейшем потоке вызовов. Построить кривые распределения вероятностей Pi = f (i) и произвести сравнение полученных результатов.Задача 2. Пучок ИШК координатной станции типа АТСК-Y обслуживает абонентов одного блока АИ. Определить поступающую на этот пучок нагру
200 руб.
Курсовая работа По дисциплине: Теория телетрафика Шифр: 17.15.15.8.18.6.15
dralex
: 21 сентября 2020
Курсовая работа
По дисциплине: Теория телетрафика Шифр: 17.15.15.8.18.6.15
Задача 1
На однолинейную СМО поступает простейший поток вызовов с параметром 34 выз/час. Вызовы обслуживаются с ожиданием. Время обслуживания вызовов распределено: а)показательно со средним значением 60c; модель обслуживания М/М/1;
б)постоянно с h=t ; модель обслуживания М/Д/1. Допустимое время ожидания начала обслуживания - 120 с. Определить: для модели М/М/1 и М/Д/1 - функцию распределения времени ожида
250 руб.
Курсовая работа по дисциплине: Теория телетрафика. Вариант 24
nlv
: 4 сентября 2018
Шифр: 14.18.6.16.9.8.3
Задача No1. На однолинейную СМО поступает простейший поток вызовов с параметром 39 выз/час. Вызовы обслуживаются с ожиданием. Время обслуживания вызовов распределено:
показательно со средним значением 70 c для модели обслуживания М/М/1;
постоянно с h=t для модели обслуживания М/Д/1.
Допустимое время ожидания начала обслуживания - 140 с.
Определить: для моделей М/М/1 и М/Д/1 функцию распределения времени ожидания начала обслуживания; среднее время начала обслуживания для
300 руб.
Курсовая работа по дисциплине Теория телетрафика Шифр: 14.18.8.3.8.9.17
snrudenko
: 6 ноября 2017
Шифр: 14.18.8.3.8.9.17
Задачи:
1. На однолинейную СМО поступает простейший поток вызовов с параметром 39 выз/час. Вызовы обслуживаются с ожиданием. Время обслуживания вызовов распределено:
а)показательно со средним значением 70 c; модель обслуживания М/М/1; б)постоянно с h=t ; модель обслуживания М/Д/1.
Допустимое время ожидания начала обслуживания - 140 с.
Определить:
- для модели М/М/1 и М/Д/1 - функцию распределения времени о
300 руб.
Другие работы
ММА/ИДО Иностранный язык в профессиональной сфере (ЛТМ) Тест 20 из 20 баллов 2024 год
mosintacd
: 28 июня 2024
ММА/ИДО Иностранный язык в профессиональной сфере (ЛТМ) Тест 20 из 20 баллов 2024 год
Московская международная академия Институт дистанционного образования Тест оценка ОТЛИЧНО
2024 год
Ответы на 20 вопросов
Результат – 100 баллов
С вопросами вы можете ознакомиться до покупки
ВОПРОСЫ:
1. We have … to an agreement
2. Our senses are … a great role in non-verbal communication
3. Saving time at business communication leads to … results in work
4. Conducting negotiations with foreigners we shoul
150 руб.
Задание №2. Методы управления образовательными учреждениями
studypro
: 13 октября 2016
Практическое задание 2
Задание 1. Опишите по одному примеру использования каждого из методов управления в Вашей профессиональной деятельности.
Задание 2. Приняв на работу нового сотрудника, Вы надеялись на более эффективную работу, но в результате разочарованы, так как он не соответствует одному из важнейших качеств менеджера - самодисциплине. Он не обязателен, не собран, не умеет отказывать и т.д.. Но, тем не менее, он отличный профессионал в своей деятельности. Какими методами управления Вы во
200 руб.
Особенности бюджетного финансирования
Aronitue9
: 24 августа 2012
Содержание:
Введение
Теоретические основы бюджетного финансирования
Понятие и сущность бюджетного финансирования
Характеристика основных форм бюджетного финансирования
Анализ бюджетного финансирования образования
Понятие и источники бюджетного финансирования образования
Проблемы бюджетного финансирования образования
Основные направления совершенствования бюджетного финансирования образования
Заключение
Список использованный литературы
Цель курсовой работы – исследовать особенности бюджетного фин
20 руб.
Программирование (часть 1-я). Зачёт. Билет №2
sibsutisru
: 3 сентября 2021
ЗАЧЕТ по дисциплине “Программирование (часть 1)”
Билет 2
Определить значение переменной y после работы следующего фрагмента программы:
a = 3; b = 2 * a – 10; x = 0; y = 2 * b + a;
if ( b > y ) or ( 2 * b < y + a ) ) then begin x = b – y; y = x + 4 end;
if ( a + b < 0 ) and ( y + x > 2 ) ) then begin x = x + y; y = x – 2 end;
200 руб.