Дискретная математика. Контрольная работа №1 - Вариант № 11
Состав работы
|
|
|
|
Работа представляет собой rar архив с файлами (распаковать онлайн), которые открываются в программах:
- Microsoft Word
Описание
No1 Доказать равенства, используя свойства операций над множествами и определения операций. Проиллюстрировать при помощи диаграмм Эйлера-Венна.
а) (AÈ B) \ (AÇ B) = (A\B) È (B\A) б) U2 \ (A ́ B) = (` A ́ U) È (U ́ ` B).
No2 Даны два конечных множества: А={a,b,c}, B={1,2,3,4}; бинарные отношения P1 Í A ́ B, P2 Í B2. Изобразить P1, P2 графически. Найти P = (P2P1)–1. Выписать области определения и области значений всех трех отношений: P1, P2, Р. Построить матрицу [P2], проверить с ее помощью, является ли отношение P2 рефлексивным, симметричным, антисимметричным, транзитивным. P1 = {(a,2),(a,4),(b,3),(c,1),(c,2)}; P2 = {(1,1),(1,3),(2,4),(3,1),(3,4),(4,3),(4,2)}.
No3 Задано бинарное отношение P; найти его область определения и область значений. Проверить по определению, является ли отношение P рефлексивным, симметричным, антисимметричным, транзитивным. P Í Z2, P = {(x,y) | x2 + y2 = 1}.
No4 Доказать утверждение методом математической индукции:
(n3 + 5·n) кратно 6 для всех целых n 3 0.
No5 Бригада из семи взломщиков одновременно выходит на грабеж трех разных магазинов. Сколькими способами они могут разделиться? Сколькими способами их после задержания могут рассадить по четырем одинаковым камерам (не менее чем по одному в каждую)?
No6 Сколько существует положительных трехзначных чисел: а) не делящихся ни на одно из чисел 6, 14, 20? б) делящихся ровно на одно из этих трех чисел?
Задачи: с 1 по 10 все решены
а) (AÈ B) \ (AÇ B) = (A\B) È (B\A) б) U2 \ (A ́ B) = (` A ́ U) È (U ́ ` B).
No2 Даны два конечных множества: А={a,b,c}, B={1,2,3,4}; бинарные отношения P1 Í A ́ B, P2 Í B2. Изобразить P1, P2 графически. Найти P = (P2P1)–1. Выписать области определения и области значений всех трех отношений: P1, P2, Р. Построить матрицу [P2], проверить с ее помощью, является ли отношение P2 рефлексивным, симметричным, антисимметричным, транзитивным. P1 = {(a,2),(a,4),(b,3),(c,1),(c,2)}; P2 = {(1,1),(1,3),(2,4),(3,1),(3,4),(4,3),(4,2)}.
No3 Задано бинарное отношение P; найти его область определения и область значений. Проверить по определению, является ли отношение P рефлексивным, симметричным, антисимметричным, транзитивным. P Í Z2, P = {(x,y) | x2 + y2 = 1}.
No4 Доказать утверждение методом математической индукции:
(n3 + 5·n) кратно 6 для всех целых n 3 0.
No5 Бригада из семи взломщиков одновременно выходит на грабеж трех разных магазинов. Сколькими способами они могут разделиться? Сколькими способами их после задержания могут рассадить по четырем одинаковым камерам (не менее чем по одному в каждую)?
No6 Сколько существует положительных трехзначных чисел: а) не делящихся ни на одно из чисел 6, 14, 20? б) делящихся ровно на одно из этих трех чисел?
Задачи: с 1 по 10 все решены
Дополнительная информация
Год сдачи: 2011
Оценка: Зачет
Вариант №11
Оценка: Зачет
Вариант №11
Похожие материалы
Контрольная работа №1 по дискретной математике
a-cool-a
: 4 мая 2012
Задание 1.
Для графа G=(X,U) ( рисунок 1) выполнить следующее:
1.1. Построить:
- матрицу смежности;
- матрицу инциденций.
1.2. Определить степени для всех вершин {xi} данного графа.
(Указать каким способом вычисляли S(xi)).
1.3. а). Подсчитать количество маршрутов длиной в графе G=(X,U).
б). Построить все длиной , связывающие вершины хi и хk ( помечены * ).'
Маршруты записать в форме: =( хi ,... хt ,..., хk), где p номер маршрута.
Примечание. Для выполнения п.1.3а) составить про
100 руб.
Дискретная математика. Контрольная работа. Вариант №11.
BOETZ
: 9 апреля 2017
Доказать равенства, используя свойства операций над множествами и определения операций. Проиллюстрировать при помощи диаграмм Эйлера-Венна.
а) (AB) \ (AB) = (A\B) (B\A) б) U2 \ (AB) = (AU) (UB).
No2 Даны два конечных множества: А={a,b,c}, B={1,2,3,4}; бинарные отношения P1 AB, P2 B2. Изобразить P1, P2 графически. Найти P = (P2P1)–1. Выписать области определения и области значений всех трех отношений: P1, P2, Р. Построить матрицу [P2], проверить с ее помощью, является ли отношение P2
50 руб.
Дискретная математика. Контрольная работа. Вариант 11.
carbadjuec
: 23 июня 2011
I. Задано универсальное множество U и множества A, B, C, D. Найти результаты действий a) - д) и каждое действие проиллюстрировать с помощью диаграммы Эйлера-Венна.
II. Ввести необходимые элементарные высказывания и записать логической формулой следующее предложение.
III. Для булевой функции найти ...
90 руб.
Контрольная работа №1 по дисциплине «Дискретная математика»
Anza
: 8 июля 2019
Вариант 13
No1 Доказать равенства, используя свойства операций над множествами и определения операций. Проиллюстрировать при помощи диаграмм Эйлера-Венна. а) б) (А ́В)È(В ́А)=(С ́D) Þ A=B=C=D.
No2 Даны два конечных множества: А={a,b,c}, B={1,2,3,4}; бинарные отношения P1 AB, P2 B2. Изобразить P1, P2 графически. Найти P = (P2P1)–1. Выписать области определения и области значений всех трех отношений: P1, P2, Р. Построить матрицу [P2], проверить с ее помощью, является ли отношение P2 рефлекс
500 руб.
Контрольная работа №1 по дисциплине: «Дискретная математика»
kas5360
: 26 ноября 2015
I. Задано универсальное множество U и множества A,B,C,D. Найти результаты действий a) - д) и каждое действие проиллюстрировать с помощью диаграммы Эйлера-Венна.
а) ; б) ; в) ; г) ; д) .
100 руб.
Контрольная работа по дисциплине: Дискретная математика. Вариант №11
IT-STUDHELP
: 2 июля 2019
Задачи
No1 Доказать равенства, используя свойства операций над множествами и определения операций. Проиллюстрировать при помощи диаграмм Эйлера-Венна.
а) (AB) \ (AB) = (A\B) (B\A) б) U2 \ (AB) = (AU) (UB).
No2 Даны два конечных множества: А={a,b,c}, B={1,2,3,4}; бинарные отношения P1 AB, P2 B2. Изобразить P1, P2 графически. Найти P = (P2P1)–1. Выписать области определения и области значений всех трех отношений: P1, P2, Р. Построить матрицу [P2], проверить с ее помощью, является ли от
350 руб.
Контрольная работа по дисциплине "Дискретная математика". Вариант №11
kanchert
: 31 марта 2014
Вариант 11
No1 Доказать равенства, используя свойства операций над множествами и определения операций. Проиллюстрировать при помощи диаграмм Эйлера-Венна.
а) (AB) \ (AB) = (A\B) (B\A) б) U2 \ (AB) = (AU) (UB).
No2 Даны два конечных множества: А={a,b,c}, B={1,2,3,4}; бинарные отношения P1 AB, P2 B2. Изобразить P1, P2 графически. Найти P = (P2P1)–1. Выписать области определения и области значений всех трех отношений: P1, P2, Р. Построить матрицу [P2], проверить с ее помощью, являет
Контрольная работа 1 Дискретная математика Вариант 6
SOKOLOV
: 27 октября 2024
Вариант 6
No1 Доказать равенства, используя свойства операций над множествами и определения операций. Проиллюстрировать при помощи диаграмм Эйлера-Венна. а) (A\C) \ (B\C) = (A\B)\C б) (A B) (C D)=(A C) (B D).
No2 Даны два конечных множества: А={a,b,c}, B={1,2,3,4}; бинарные отношения P1 A B, P2 B2. Изобразить P1, P2 графически. Найти P=(P2P1)–1. Выписать области определения и области значений всех трех отношений: P1, P2, Р. Построить матрицу [P2], проверить с ее помощью, является ли о
184 руб.
Другие работы
Проектирование привода подвесного цепного пластинчатого конвейера
Рики-Тики-Та
: 23 октября 2011
СОДЕРЖАНИЕ
Техническое задание ......................................................................................... 3
Введение ............................................................................................................. 4
1 Кинематический расчет привода ..................................................................... 5
1.1 Выбор электродвигателя ........................................................................... 5
1.2 Ресурс работы передачи .......
55 руб.
Опора промежуточная И53.11.00.00 ЧЕРТЕЖ
coolns
: 6 июля 2025
Опора промежуточная И53.11.00.00 ЧЕРТЕЖ
Промежуточная опора применяется, в тех случаях, когда необходимо передать вращение от двигателя к машине при большом удалении их друг от друга. Вал 10 опоры вращается в трех подшипниках. Пружинные кольца 19 предотвращают перемещение подшипников 20 и 21 в обоймах 2 и 7. На валу 10 подшипники 20 и 21 закреплены стопорными кольцами 18. Лабиринтные уплотнения, образованные кольцами 11 и крышками 12, предохраняют подшипники опоры от попадания в них грязи и пыл
750 руб.
Компоновка сборного железобетонного междуэтажного перекрытия
alfFRED
: 28 августа 2013
Содержание
1. Компоновка сборного ж. б. междуэтажного перекрытия
2. Проектирование предварительно напряжённой плиты перекрытия
2.1 Данные для расчёта
2.2 Расчётный пролёт и нагрузки
2.3 Усилия от расчётных и нормативных нагрузок
2.4 Компоновка поперечного сечения панели
2.5 Расчёт полки на местный изгиб
2.6 Расчёт прочности сечений нормальных к оси панели
2.7 Расчёт прочности по наклонным сечениям
2.8 Расчёт преднапряжённой плиты по предельным состояниям второй группы
2.9 Расчёт панел
10 руб.
Лабораторная работа №1.4. “Упрощенная процедура обработки результатов ”. Метрология, стандартизация и сертификация. Вариант №1
ir4onka
: 8 января 2018
1. Цель работы.
Ознакомление с упрощенной процедурой обработки результатов прямых измерений с многократными наблюдениями. Получение, применительно к упрощенной процедуре, навыков обработки результатов наблюдений, оценка погрешностей результатов измерений и планирование количества наблюдений.
2. Задание для подготовки к выполнению лабораторной работы.
2.1. Контрольные вопросы.
2.1.1. Как обнаружить грубую погрешность при многократных наблюдениях?
При грубой погрешности результат одного или нек
100 руб.