Теория вероятностей (5 задач)

Цена:
50 руб.

Состав работы

material.view.file_icon 6F14EFCA-3682-4A3A-91F9-B6B208122A3C.rtf
Работа представляет собой файл, который можно открыть в программе:
  • Microsoft Word

Описание

Задание 1
Имеется четверо мужчин и шесть женщин. Каждый мужчина женился на одной из женщин. Сколькими способами это можно сделать?

Задание 2
В ожесточенном бою не менее 70% бойцов потеряли один глаз, не менее 75% - одно ухо, не менее 80% - одну руку, не менее 85% - одну ногу. Какое минимальное число потерявших одновременно глаз, ухо, руку, ногу?

Задание 3
Двое поочередно бросают монетку. Выиграет тот, у кого раньше выпадет герб. Определить вероятность выигрыша для каждого игрока.

Задание 4
В кошельке лежат 8 монет достоинством по 5 копеек и 2 монеты достоинством в 3 копейки. Наудачу выбирается монета и бросается 5 раз. Какова вероятность того, что в сумме будет 15 очков, если "герб" принимается за "0"?

Задание 5
Для лица, дожившего до 20-летнего возраста, вероятность смерти на 21-м году жизни равна 0,006. Застрахована группа в 15000 человек 20-летнего возраста, причем каждый застрахованный внес по 20 у.е. Какую максимальную выплату наследникам следует установить, чтобы вероятность того, что к концу года страховое учреждение окажется в убытке, была не больше 0,0228?

Дополнительная информация

Год сдачи 2012
Отлично
Теория вероятностей, 18 вариант, 5 задач
Задача 1. Брошены два одинаковых игральных кубика, на гранях которого нанесены цифры от 1 до 6. Найти вероятность того, что цифра 6 появится хотя бы на одной грани. Задача 2. Пусть вероятность того, что телевизор потребует ремонта в течение гарантийного срока, равна 0,2. Найти вероятность того, что в течение гарантийного срока из трех телевизоров: а) не более одного потребует ремонта; б) хотя бы один не потребует ремонта. Задача 3. При проведении эксперимента монету подбрасывали 4096 раз, прич
User vladslad : 4 сентября 2015
200 руб.
Теория вероятностей, 18 вариант, 5 задач
Теория вероятностей
Вариант 5. Из 8 карточек с буквами А, Б, В, Г, Д, Е, Ж, З наугад берут три карточки и расставляют в случайном порядке. Найти вероятность того, что получится слово ГАЗ. Вариант 5. В автопарке имеются автомобили трех марок, всех поровну. Автомобиль первой марки исправен с вероятностью 0,8, второй марки - с вероятностью 0,7, третьей - с вероятностью 0,85. а) Найти вероятность того, что произвольный автомобиль автопарка исправен. б) Найти вероятность того, что исправный автомобиль является третьей м
User Aleksey0697 : 19 марта 2019
50 руб.
Теория вероятности
Задание 3. В партии из 6 изделий содержится 3 бракованных. Контролер проверяет изделия последовательно по одному до тех пор, пока не появляется бракованное. Тогда вся партия возвращается изготовителю. Найти ряд распределения этой случайной величины, математическое ожидание, дисперсию и СКО, а также вероятность того, что число проверенных изделий будет больше двух. Задание 4. Непрерывная случайная величина задана функцией распределения: Найти параметр С, плотность распределения, математическое
User Mikola456 : 27 мая 2016
500 руб.
Теория вероятностей
Задача 10. 8. вариант 8 Вероятность хотя бы одного попадания при двух выстрелах равна 0,99. Найти вероятность четырех попаданий при пяти выстрелах. Задача 11.8. Вероятность появления события в каждом из независимых испытаний равна 0,2. Найти вероятность того, что событие наступит 12 раз в 100 испытаний. Задача 12.8. требуется найти: а) математическое ожидание; б) дисперсию; в) среднее квадратическое отклонение дискретной случайной величины Х по заданному закону ее распределения, заданному т
User татьяна89 : 3 февраля 2011
55 руб.
Теория Вероятностей.
Билет № 19 1. Моменты распределения и другие числовые характеристики случайной величины. 2. График плотности распределения случайной величины X имеет вид: Найти интегральную функцию и вероятность попадания X на отрезок [0;2]. 3. В группе 2 человека сдали экзамен на «5», 6 человек – на «4», 12 – на «3», 3 – на «2». Найти вероятность того, что случайно взятый человек сдал экзамен на «4» или «5». 4. По каналу связи передается кодовая комбинация из 5 символов. Вероятность искажения одного символа
User dimanis : 21 января 2011
50 руб.
Теория вероятностей.
Билет № 12 1. Распределение Пуассона и его характеристики 2. Четырехзначный номер не содержит нулей. Какова вероятность, что он содержит одну семерку»? 3. По цифровому каналу передаются символы "О" и "I", причем доля передаваемых нулей вдвое больше, чем единиц. Вероятность искажения символа "О" равна 0,06, вероятность искажения "I" - 0,09. Найти вероятность искажения символа при передаче по этому каналу. 4. Вероятность наступления события в каждом из независимых испытаний равна 0,8. Сколько нужн
User татьяна89 : 20 января 2011
50 руб.
Теория вероятности
Вариант №8 Текст 1. Вероятность соединения при телефонном вызове равна p. Какова вероятность, что соединение произойдёт только при k - ом вызове? При p=0,6 k=3 Текст 2. В одной урне K белых шаров и L чёрных шаров, а в другой – M белых и N чёрных. Из первой урны случайным образом вынимают P шаров и опускают во вторую урну. После этого из второй урны также случайно вынимают R шаров. Найти вероятность того, что все шары, вынутые из второй урны, белые. Текст 3. В типографии имеется K печатных маши
User 1231233 : 17 сентября 2010
23 руб.
Теория вероятности
Экзамен. билет №15 сесместр 4 СИБГУТИ 1. Дискретная двумерная случайная величина и её распределение. 2. Интегральная функция распределения случайной величины X имеет вид: Найти коэффициент А, плотность f(x) и вероятность попадания Х в интервал [1;2]. 3. Из аэровокзала отправились 2 автобуса-экспресса к трапам самолётов. Вероятность своевременного прибытия каждого автобуса в аэропорт равна 0,95. Найти вероятность того, что а) оба автобуса опоздают; б) хотя бы один автобус прибудет вовремя. 4. Пр
User BOND : 9 февраля 2010
150 руб.
ММА/ИДО Иностранный язык в профессиональной сфере (ЛТМ) Тест 20 из 20 баллов 2024 год
ММА/ИДО Иностранный язык в профессиональной сфере (ЛТМ) Тест 20 из 20 баллов 2024 год Московская международная академия Институт дистанционного образования Тест оценка ОТЛИЧНО 2024 год Ответы на 20 вопросов Результат – 100 баллов С вопросами вы можете ознакомиться до покупки ВОПРОСЫ: 1. We have … to an agreement 2. Our senses are … a great role in non-verbal communication 3. Saving time at business communication leads to … results in work 4. Conducting negotiations with foreigners we shoul
User mosintacd : 28 июня 2024
150 руб.
promo
Задание №2. Методы управления образовательными учреждениями
Практическое задание 2 Задание 1. Опишите по одному примеру использования каждого из методов управления в Вашей профессиональной деятельности. Задание 2. Приняв на работу нового сотрудника, Вы надеялись на более эффективную работу, но в результате разочарованы, так как он не соответствует одному из важнейших качеств менеджера - самодисциплине. Он не обязателен, не собран, не умеет отказывать и т.д.. Но, тем не менее, он отличный профессионал в своей деятельности. Какими методами управления Вы во
User studypro : 13 октября 2016
200 руб.
Особенности бюджетного финансирования
Содержание: Введение Теоретические основы бюджетного финансирования Понятие и сущность бюджетного финансирования Характеристика основных форм бюджетного финансирования Анализ бюджетного финансирования образования Понятие и источники бюджетного финансирования образования Проблемы бюджетного финансирования образования Основные направления совершенствования бюджетного финансирования образования Заключение Список использованный литературы Цель курсовой работы – исследовать особенности бюджетного фин
User Aronitue9 : 24 августа 2012
20 руб.
Программирование (часть 1-я). Зачёт. Билет №2
ЗАЧЕТ по дисциплине “Программирование (часть 1)” Билет 2 Определить значение переменной y после работы следующего фрагмента программы: a = 3; b = 2 * a – 10; x = 0; y = 2 * b + a; if ( b > y ) or ( 2 * b < y + a ) ) then begin x = b – y; y = x + 4 end; if ( a + b < 0 ) and ( y + x > 2 ) ) then begin x = x + y; y = x – 2 end;
User sibsutisru : 3 сентября 2021
200 руб.
Программирование (часть 1-я). Зачёт. Билет №2
up Наверх