Экономико-математические методы. Контрольная работа. Вариант №4.
Состав работы
|
|
|
|
Работа представляет собой rar архив с файлами (распаковать онлайн), которые открываются в программах:
- Microsoft Word
Описание
Задача No1.
На территории города имеется три телефонных станции А, Б и В. Незадействованные емкости станций составляют на станции А - QА, Б - QБ, В - QВ номеров (Табл. 1). Потребности новых районов застройки города в телефонах составляют: 1 - Q1, 2 - Q2, 3 - Q3, 4 - Q4 номеров (Табл. 2).
Необходимо составить экономико-математическую модель задачи и с помощью распределительного или модифицированного метода линейного программирования найти вариант распределения емкостей телефонных станций между районами новой застройки, который обеспечивал бы минимальные затраты как на строительство, так и на эксплуатацию линейных сооружений телефонной сети. Естественно, что таким вариантом при прочих равных условиях будет такое распределение емкости, при котором общая протяженность абонентских линий будет минимальной.
Исходные данные на прилагаемых скриншотах.
ЗАДАЧА No 2.
Необходимо оценить работу автоматической телефонной станции (АТС), которая имеет n линий связи. Моменты поступления вызовов на станцию являются случайными и независимыми друг от друга. Средняя плотность потока равна λ вызовов в единицу времени. Продолжительность каждого разговора является величиной случайной и подчинена показательному закону распределения. Среднее время одного разговора равно tобс единиц времени.
Исходные данные на прилагаемых скриншотах.
ЗАДАЧА No3.
В таблице приведены затраты времени почтальона (в минутах) на проход между пунктами доставки на участке. Используя метод "ветвей и границ", найти маршрут почтальона, при котором затраты времени на его проход будут минимальными.
Исходные данные на прилагаемых скриншотах.
На территории города имеется три телефонных станции А, Б и В. Незадействованные емкости станций составляют на станции А - QА, Б - QБ, В - QВ номеров (Табл. 1). Потребности новых районов застройки города в телефонах составляют: 1 - Q1, 2 - Q2, 3 - Q3, 4 - Q4 номеров (Табл. 2).
Необходимо составить экономико-математическую модель задачи и с помощью распределительного или модифицированного метода линейного программирования найти вариант распределения емкостей телефонных станций между районами новой застройки, который обеспечивал бы минимальные затраты как на строительство, так и на эксплуатацию линейных сооружений телефонной сети. Естественно, что таким вариантом при прочих равных условиях будет такое распределение емкости, при котором общая протяженность абонентских линий будет минимальной.
Исходные данные на прилагаемых скриншотах.
ЗАДАЧА No 2.
Необходимо оценить работу автоматической телефонной станции (АТС), которая имеет n линий связи. Моменты поступления вызовов на станцию являются случайными и независимыми друг от друга. Средняя плотность потока равна λ вызовов в единицу времени. Продолжительность каждого разговора является величиной случайной и подчинена показательному закону распределения. Среднее время одного разговора равно tобс единиц времени.
Исходные данные на прилагаемых скриншотах.
ЗАДАЧА No3.
В таблице приведены затраты времени почтальона (в минутах) на проход между пунктами доставки на участке. Используя метод "ветвей и границ", найти маршрут почтальона, при котором затраты времени на его проход будут минимальными.
Исходные данные на прилагаемых скриншотах.
Дополнительная информация
2012,СИБГУТИ, А.Р.Батый, зачёт.
Похожие материалы
Экономико-математические методы. Контрольная работа. Вариант №4
Галиина
: 12 марта 2017
Задача 1
На территории города имеется три телефонных станции А, Б и В. Незадействованные емкости станций составляют на станции А - QА, Б - QБ, В - QВ номеров (таблица 1.1). Потребности новых районов застройки города в телефонах составляют: 1 - q1, 2 - q2, 3 - q3, 4 - q4 номеров (таблица 1.2).
Необходимо составить экономико-математическую модель задачи и с помощью распределительного или модифицированного метода линейного программирования найти вариант распределения емкостей телефонных станций м
210 руб.
Контрольная работа. Экономико-математические методы. Вариант №4
karinjan
: 28 сентября 2014
Задача 1
На территории города имеется три телефонных станции А, Б и В. Незадействованные емкости станций составляют на станции А - QА, Б - QБ, В - QВ номеров (таблица 1.1). Потребности новых районов застройки города в телефонах составляют: 1 - q1, 2 - q2, 3 - q3, 4 - q4 номеров (таблица 1.2).
Необходимо составить экономико-математическую модель задачи и с помощью распределительного или модифицированного метода линейного программирования найти вариант распределения емкостей телефонных станций ме
200 руб.
Контрольная работа по дисциплине: « Экономико-математические методы» Вариант 4
ksulika2005
: 8 октября 2017
ЗАДАЧА 1.
На территории города имеется три телефонных станции А, Б и В. Незадействованные емкости станций составляют на станции А - QА, Б - QБ, В - QВ номеров (таблица 1.1). Потребности новых районов застройки города в телефонах составляют: 1 - q1, 2 - q2, 3 - q3, 4 - q4 номеров (таблица 1.2).
Необходимо составить экономико-математическую модель задачи и с помощью распределительного или модифицированного метода линейного программирования найти вариант распределения емкостей телефонных станций ме
200 руб.
Контрольная работа по дисциплине: экономико-математические методы. Вариант №4.
ДО Сибгути
: 16 февраля 2016
Задача №1
На территории города имеется три телефонных станций А,Б,В. Незадействованные емкости станций составляют на станции А-1200, Б-500, В-1100 номеров. Потребности новых районов застройки города в телефонных составляют: 1-800, 2-700, 3-400, 4-900 номеров.
Необходимо составить экономико-математическую модель задачи и с помощью распределительного метода линейного программирования найти вариант распределения емкостей телефонных станций между районами новой застройки, который обеспечивал бы мини
150 руб.
Экономика математические методы. Вариант №4
5234
: 7 ноября 2016
Задача №1
Дано:
Функция полезности потребителя имеет вид:
Запишите задачу потребителя и на ее основе алгебраически постройте уравнения функций спроса Маршалла.
Решение.
Задача потребителя для данной функции полезности имеет вид:
Задача №2
Дано:
Функция потребления: C = 0,8Y + 40.
Спрос предпринимателей на инвестиции: I=300–40i.
Государственные закупки на рынке благ: G = 60.
Определить:
Уравнение линии IS.
Задача №3
Дано:
В обращении находится 50 ден.ед., скорость их обращения – V = 10 оборот
95 руб.
Контрольная работа. Экономико математические методы
barhatovain
: 26 января 2016
Задача No1
Дано:
На территории города имеется три телефонных станции А, Б и В. Незадействованные емкости станций составляют:
на станции А - QА= 1200 номеров,
на станции Б - QБ=500 номеров,
на станции В - QВ=1100 номеров.
Потребности новых районов застройки города в телефонах составляют:
q1=800, q2=700, q3=400, q4=900 номеров.
Определить:
Необходимо составить экономико-математическую модель задачи и с помощью распределительного или модифицированного метода линейного программирования найти в
200 руб.
Экономико математические методы. Контрольная работа
ДО Сибгути
: 12 февраля 2014
Задача 2
Необходимо оценить работу АТС, которая имеет n линий связи.
Моменты поступления вызовов на станцию являются случайными и независимыми друг от друга.
Средняя плотность потока равна λ вызовов в единицу времени.
Продолжительность каждого разговора является величиной случайной и подчинена показательному закону распределения.
Среднее время одного разговора равно tабс единиц времени.
Задача 4
На столовом графике цифры у стрелок показывают в числителе – продолжительность работы в днях, в зн
50 руб.
Экономико-математические методы и модели в отрасли связи. Контрольная работа. Вариант № 4
denisen
: 17 ноября 2011
Задача 1.
На территории города имеется три телефонные станции А, Б, и В. неза-действованные ёмкости станций составляют на станции А-1200, Б-500, В-1100 номеров. Потребности новых районов застройки города в телефонах составляют: 1-800, 2-700, 3-400, 4-200 номеров.
Необходимо составить экономико-математическую модель задачи с по-мощью модифицированного метода линейного программирования найти вариант распределения ёмкостей телефонных станций между районами новой застройки, который обеспечивал бы м
110 руб.
Другие работы
МЖГ_Лабораторные №1_№2_Вариант№3
Bernard1611
: 22 июня 2022
Лабораторная No1 Вариант No3
ОПРЕДЕЛЕНИЕ ПОЛНОЙ СИЛЫ
ГИДРОСТАТИЧЕСКОГО ДАВЛЕНИЯ ЖИДКОСТИ НА
ПЛОСКУЮ НАКЛОННУЮ СТЕНКУ
1. Найти опытным путем величину полной силы гидростатического давления жидкости на плоскую стенку, расположенную в жидкости под углом α к ее свободной поверхности.
2. Рассчитать значение полной силы гидростатического давления жидкости по теоретической формуле и сравнить его с опытной величиной.
3. Определить координаты центра давления и величину эксцентриситета давления по и
350 руб.
Контрольная работа по дисциплине: «Проектирование телекоммуникационных систем с подвижными объектами»
ART1800
: 28 февраля 2014
Содержание
1. Задание
2. Краткое описание технологии мобильной связи стандарта CDMA
3. Решение
Выводы
Список использованной литературы
300 руб.
ЛАБОРАТОРНАЯ РАБОТА №2(5) по дисциплине: Теория электрических цепей Исследование пассивных четырехполюсников. Вариант: №1
KVASROGOV
: 25 ноября 2020
ЛАБОРАТОРНАЯ РАБОТА №2(5)
По дисциплине: Теория электрических цепей
Исследование пассивных четырехполюсников
Вариант: 1
75 руб.
Менеджмент в телекоммуникациях. 5 семестр. Курсовая работа.
skaser
: 14 ноября 2011
Тема: «Технико-экономический проект участка первичной сети»
Введение
Первичная сеть представляет собой совокупность магистральной первичной сети, внутризоновой первичной сети, и местной первичной сети. Проектируемый участок относится к магистральной первичной сети. В состав магистральной сети входят сетевые станции СС, сетевые узлы СУ, линии передач. В СС большая часть емкости системы заканчивается каналами тональной частоты или широкополосными каналами. В СУ каналами заканчивается только меньш
60 руб.