Лабораторная работа № 3. Предмет : «Теория вычислительных процессов»
Состав работы
|
|
Работа представляет собой файл, который можно открыть в программе:
- Microsoft Word
Описание
Задание 1:
Изложите суть проблем, возникающих в модели системы, описанной притчей о пяти обедающих философах.
Задание 2:
Объясните, каким образом совокупность обычных операторов последовательного программирования может быть взята за основу структуры последовательных взаимодействующих процессов.
Задание 3:
Опишите структуру и способ построения системы, в которой ограниченное число физических ресурсов, таких, как диски и печатающие устройства, разделено между большим количеством процессов с переменной потребностью в этих ресурсах.
Изложите суть проблем, возникающих в модели системы, описанной притчей о пяти обедающих философах.
Задание 2:
Объясните, каким образом совокупность обычных операторов последовательного программирования может быть взята за основу структуры последовательных взаимодействующих процессов.
Задание 3:
Опишите структуру и способ построения системы, в которой ограниченное число физических ресурсов, таких, как диски и печатающие устройства, разделено между большим количеством процессов с переменной потребностью в этих ресурсах.
Дополнительная информация
Отличнаая работа!
ПОВТиАС
Подходит для всех вариантов!
ПОВТиАС
Подходит для всех вариантов!
Похожие материалы
Теория вычислительных процессов. Лабораторная работа №3
zhekaersh
: 24 февраля 2015
Тема: Процессы. Параллельные процессы. Последовательные процессы.
Цель работы: Усвоить понятие процесса. Изучить виды процессов и способы их взаимодействия.
Рекомендации по выполнению работы
1. проработать материал лекции 9-14
2. При оформлении выполненного пункта задания не руководствуйтесь пословицей “краткость - сестра таланта”, расписывайте свои аргументы подробнее, делайте ссылки на страницы лекционного материала
Задания
1. Изложите суть проблем, возникающих в модели системы, описанной пр
35 руб.
Теория вычислительных процессов. Лабораторная работа №3
wars
: 21 декабря 2014
Задания
1. Изложите суть проблем, возникающих в модели системы, описанной притчей о пяти обедающих философах.
2. Объясните, каким образом совокупность обычных операторов последовательного программирования может быть взята за основу структуры последовательных взаимодействующих процессов.
3. Опишите структуру и способ построения системы, в которой ограниченное число физических ресурсов, таких, как диски и печатающие устройства, разделено между большим количеством процессов с переменной потре
150 руб.
Лабораторная работа № 3 по дисциплине: Теория вычислительных процессов
1231233
: 29 января 2012
Лабораторная работа №3
По дисциплине «Теория вычислительных процессов» на тему
«Процессы. Параллельные процессы. Последовательные процессы»
Задание 1:
Изложите суть проблем, возникающих в модели системы, описанной притчей о пяти обедающих философах.
Задание 2:
Объясните, каким образом совокупность обычных операторов последовательного программирования может быть взята за основу структуры последовательных взаимодействующих процессов.
Задание 3:
Опишите структуру и способ построения системы, в
23 руб.
Лабораторная работа № 1. Предмет : «Теория вычислительных процессов»
xtrail
: 21 апреля 2013
Лабораторная работа № 1
Формы, свойства и виды стандартных схем программ
Цель работы: Научиться составлять и исследовать схему программы
Рекомендации по выполнению работы
1. проработать материал лекции 1-5
2. При оформлении выполненного пункта задания не руководствуйтесь пословицей “краткость- сестра таланта”, расписывайте свои аргументы подробнее, делайте ссылки на страницы лекционного материала
Задания
1. Найдите аналитический вид функции, кодирующей слова в алфавите V = {а, Ь, c} числами, ес
300 руб.
Лабораторная работа № 4. Предмет : «Теория вычислительных процессов»
xtrail
: 21 апреля 2013
Задание 1: Постройте граф сети Петри для следующей структуры сети Петри:
Р = {p1, p2, p3, p4},
Т = {t1, t2, t3, t4},
I(t1) = { },
I(t2) = {p1},
I(t3) = {p2, p4},
I(t4) = { },
I(t5) = {p3},
O(t1) = {p1},
O(t2) = {p2},
О(t3) = {p1, p3},
O(t4) = {p3},
O(t5) = {p4}.
Задание 2: Изобразите граф сети Петри следующей структуры:
Р = {p1 p2},
Т = {t1 t2 t3},
I(t1) = {p1},
I(t2) = {p1},
I(t3) = {p2},
О(t1) = {p1, p2},
O(t2) = {p2},
O(t3) = { }.
Задание 3: Для структуры сети Петри:
С =(Р, Т, I, О),
Р =
300 руб.
Лабораторная работа № 2. Предмет : «Теория вычислительных процессов»
xtrail
: 21 апреля 2013
Задание 1. Функции: F(n), G(n) определены с помощью операционной семантики равенствами:
F(0)=1, G(0)=2, F(n)=G(n-1), G(n)=F(n-1) + G(n-1)
Найти значения F(3) и G(3).
Задание 2. Формальные языки Е и Т определены над алфавитом {а, *, &, <, >} с помощью денотационной семантики равенствами
и
Какие из следующих строк:
a) *а&*а*&а*;
b) *а&<а&а*>;
c) *<*а*&а>&<*а*>*
принадлежат языку Е и какие не принадлежат.
Задание 3. Написать программу, используя аксиоматическую стратегию построения и проверки ц
300 руб.
Экзамен по предмету "Теория вычислительных процессов". Билет № 1
olyly7
: 10 апреля 2012
1. Вычислимость и разрешимость. Теоремы Поста и Тьюринга.
2. Операционная семантика.
Вычислимые функции — это множество функций вида, которые могут быть реализованы на машине Тьюринга. Задачу вычисления функции называют алгоритмически разрешимой или алгоритмически неразрешимой, в зависимости от того, возможно ли написать алгоритм, вычисляющий эту функцию.
130 руб.
Лабораторная работа № 3 по предмету: "Теория сложностей вычислительных процессов и структур". Вариант № 1
xtrail
: 22 апреля 2013
Задание
Написать программу, которая по алгоритму Форда-Беллмана находит кратчайшее расстояние от указанной вершины до всех остальных вершин связного взвешенного неориентированного графа, имеющего 7 вершин (нумерация вершин начинается с 0). Граф задан матрицей весов дуг, соединяющих всевозможные пары вершин (0 означает, что соответствующей дуги нет). Данные считать из файла.
Номер варианта выбирается по последней цифре пароля.
Вершина 0.
200 руб.
Другие работы
ММА/ИДО Иностранный язык в профессиональной сфере (ЛТМ) Тест 20 из 20 баллов 2024 год
mosintacd
: 28 июня 2024
ММА/ИДО Иностранный язык в профессиональной сфере (ЛТМ) Тест 20 из 20 баллов 2024 год
Московская международная академия Институт дистанционного образования Тест оценка ОТЛИЧНО
2024 год
Ответы на 20 вопросов
Результат – 100 баллов
С вопросами вы можете ознакомиться до покупки
ВОПРОСЫ:
1. We have … to an agreement
2. Our senses are … a great role in non-verbal communication
3. Saving time at business communication leads to … results in work
4. Conducting negotiations with foreigners we shoul
150 руб.
Задание №2. Методы управления образовательными учреждениями
studypro
: 13 октября 2016
Практическое задание 2
Задание 1. Опишите по одному примеру использования каждого из методов управления в Вашей профессиональной деятельности.
Задание 2. Приняв на работу нового сотрудника, Вы надеялись на более эффективную работу, но в результате разочарованы, так как он не соответствует одному из важнейших качеств менеджера - самодисциплине. Он не обязателен, не собран, не умеет отказывать и т.д.. Но, тем не менее, он отличный профессионал в своей деятельности. Какими методами управления Вы во
200 руб.
Особенности бюджетного финансирования
Aronitue9
: 24 августа 2012
Содержание:
Введение
Теоретические основы бюджетного финансирования
Понятие и сущность бюджетного финансирования
Характеристика основных форм бюджетного финансирования
Анализ бюджетного финансирования образования
Понятие и источники бюджетного финансирования образования
Проблемы бюджетного финансирования образования
Основные направления совершенствования бюджетного финансирования образования
Заключение
Список использованный литературы
Цель курсовой работы – исследовать особенности бюджетного фин
20 руб.
Программирование (часть 1-я). Зачёт. Билет №2
sibsutisru
: 3 сентября 2021
ЗАЧЕТ по дисциплине “Программирование (часть 1)”
Билет 2
Определить значение переменной y после работы следующего фрагмента программы:
a = 3; b = 2 * a – 10; x = 0; y = 2 * b + a;
if ( b > y ) or ( 2 * b < y + a ) ) then begin x = b – y; y = x + 4 end;
if ( a + b < 0 ) and ( y + x > 2 ) ) then begin x = x + y; y = x – 2 end;
200 руб.