Теория вероятностей и математическая статистика. 3-й семестр.Котрольная работа. Вариант №1

Цена:
200 руб.

Состав работы

material.view.file_icon
material.view.file_icon 1 вариант.doc
Работа представляет собой rar архив с файлами (распаковать онлайн), которые открываются в программах:
  • Microsoft Word

Описание

10.1. В каждой из двух урн содержится 6 черных и 4 белых шара. Из первой урны наудачу извлечен один шар и переложен во вторую. Найти вероятность того, что шар, извлеченный из второй урны, окажется черным.
11.1. Среднее число вызовов, поступающих на АТС в 1 мин, равно четырём. Найти вероятность того, что за 2 мин поступит: а) 6 вызовов; б) менее шести вызовов; в) не менее шести вызовов. Предполагается, что поток вызовов – простейший.
В задачах 12.1-12.10 требуется найти: а) математическое ожидание; б) дисперсию; в) среднее квадратическое отклонение дискретной случайной величины X по заданному закону её распределения, заданному таблично (в первой строке таблицы указаны возможные значения, во второй строке – вероятности возможных значений).
В задачах 13.1 – 13.10 заданы математическое ожидание а и среднее квадратическое отклонение s нормально распределённой случайной величины X. Требуется найти: а) вероятность того, что X примет значение, принадлежащее интервалу (a , b ); б) вероятность того, что абсолютная величина отклонения X-а окажется меньше d .

Дополнительная информация

2012 г. СибГУТИ , Агульник Владимир Игоревич =отлично=.
Котрольная работа. Теория вероятностей и математическая статистика. Вариант №1.
1. Пять человек рассаживаются на скамейке в случайном порядке. Среди них есть два брата. Найти вероятность того, что братья займут крайние места. 2. В команде 12 спортсменов. Из них первые четверо выполняют упражнение на «отлично» с вероятностью 0,8, трое других – с вероятностью 0,6, а остальные – с вероятностью 0,2. Случайно выбранный спортсмен из этой группы выполнил упражнение на «отлично». Какова вероятность, что он из первой четверки? 3. В оперативную часть поступает в среднем одно сообще
User rle2016 : 19 марта 2019
650 руб.
Теория вероятности и математическая статистика. 4-й семестр
10.1. В каждой из двух урн содержится 6 черных и 4 белых шара. Из первой урны наудачу извлечен один шар и переложен во вторую. Найти вероятность того, что шар, извлеченный из второй урны, окажется черным. 10.2. В каждой из двух урн содержится 8 черных и 2 белых шара. Из второй урны наудачу извлечен один шар и переложен в первую. Найти вероятность того, что шар, извлеченный из первой урны, окажется черным. 10.3. Три стрелка произвели залп по цели. Вероятность поражения цели первым стрелком равна
User Темир : 23 ноября 2014
79 руб.
Теория вероятности и математическая статистика. Вариант №9. 3-й семестр
1. Десять томов сочинений Пушкина расположены в случайном порядке на двух полках по пять томов. Найти вероятность того, что первый и второй том окажутся на одной полке. 2. На склад поступают изделия, изготовленные на трех станках, среди них половина изготовлена на первом станке, треть на втором, остальные на третьем. Вероятность брака для изделий, изготовленных на первом станке 0,1, на втором – 0,2 и на третьем – 0,25. Случайно взятое изделие оказалось бракованным. Какова вероятность,
User Spiritmad : 2 апреля 2019
150 руб.
3-й семестр ДО. «Теория вероятностей и математическая статистика». Экзамен В3
Дистанционное обучение Дисциплина «Теория вероятностей и МС» Билет № 6 1. Непрерывная случайная величина и её характеристики. Плотность и функция распределения и их свойства. Равномерное распределение 2. Из урны, где находятся 7 белых и 8 черных шаров, случайно вытащены 10 шаров. Какова вероятность того, что среди них будет 5 черных шаров? 3. Дискретная случайная величина имеет следующий ряд распределения Х 10 20 30 40 50 р a 2a 0,35 0,21 а Найти величину a, математическое ожидание и средн
User Мария60 : 11 февраля 2019
400 руб.
3-й семестр ДО. «Теория вероятностей и математическая статистика». Экзамен В3
Теория вероятности и математическая статистика. Вариант №14. 3-й семестр.
Тема: случайные события Задание: 10.4. Из трёх орудий произвели залп по цели. Вероятность попадания в цель при одном выстреле из первого орудия равна 0,8; для второго и третьего орудий эти вероятности соответственно равны 0,6 и 0,9. Найти вероятность того, что: а) только один снаряд попадёт в цель; б) только два снаряда попадут в цель; в) все три снаряда попадут в цель. 11.4. Среднее число заявок, поступающих на предприятие бытового обслуживания за 1 ч, равно четырём. Найти вероятност
User 58197 : 27 марта 2013
25 руб.
«Теория вероятностей и математическая статистика». Вариант №1
Задания работы. Задача № 1: Вероятность появления поломок на каждой из k соединительных линий равна p. Какова вероятность того, что хотя бы две линии исправны? p=0,1 k=4 Задача № 2: В одной урне K белых шаров и L чёрных шаров, а в другой – M белых и N чёрных. Из первой урны случайным образом вынимают P шаров и опускают во вторую урну. После этого из второй урны также случайно вынимают R шаров. Найти вероятность того, что все шары, вынутые из второй урны, белые. K=5; L=5; M=4; N=7; P=2; R=
User boeobq : 18 ноября 2021
75 руб.
Теория вероятностей и математическая статистика. Вариант №1
Контрольная работа "Теория вероятностей и математическая статистика" Вариант №1 Задание 1 Сколько 4-х буквенных слов можно составить из букв слова К А Р П ? Задание 2 Спортсмен попадает в основной состав команды с вероятностью 0,6, а в запас - с вероятностью 0,4. Спортсмен из основного состава команды участвует в соревновании с вероятностью 0,9, из запаса - с вероятностью 0,2. Найти вероятность участия в соревновании произвольно выбранного спортсмена. Задание 3 Найти математическое ожидание,
User dralex : 4 ноября 2019
150 руб.
Теория вероятностей и математическая статистика, вариант №1
1. Пять человек рассаживаются на скамейке в случайном порядке. Среди них есть два брата. Найти вероятность того, что братья займут крайние места. 2. В команде 12 спортсменов. Из них первые четверо выполняют упражнение на «отлично» с вероятностью 0,8, трое других – с вероятностью 0,6, а остальные – с вероятностью 0,2. Случайно выбранный спортсмен из этой группы выполнил упражнение на «отлично». Какова вероятность, что он из первой четверки? 3. В оперативную часть поступает в среднем одно сообще
User cotikbant : 13 сентября 2017
50 руб.
Основы термодинамики и теплотехники СахГУ Задача 4 Вариант 86
Наружная стена здания сделана из красного кирпича с коэффициентом теплопроводности λ=0,8 Вт/(м·ºС), толщина стены b. Температура воздуха в помещении — t1, наружного — t2. Определите, пренебрегая лучистым теплообменом, коэффициент теплопередачи, удельную потерю тепла через стенку и температуру обеих поверхностей стенки по заданным коэффициентам теплоотдачи с обеих сторон α1 и α2.
User Z24 : 29 января 2026
150 руб.
Основы термодинамики и теплотехники СахГУ Задача 4 Вариант 86
Контрольная работа №2 по дисциплине: Математической анализ. Вариант №8.
Задача No1 Дано: Даны функция , точка и вектор . Найти: 1) в точке . 2) производную в точке по направлению вектора , если , , . Задача No2 Дано: Вычислить с помощью двойного интеграла в полярных координатах площадь фигуры, ограниченной кривой, заданной уравнением в декартовых координатах , если . Задача No3 Дано: Вычислить с помощью тройного интеграла объем тела, ограниченного указанными поверхностями: , , , . Задача No4 Дано: Даны векторное поле и плоскость , которая со
User ДО Сибгути : 14 февраля 2016
70 руб.
Контрольная работа №2 по дисциплине: Математической анализ. Вариант №8. promo
Онлайн Тест 1 по дисциплине: Промышленные электроустановки (ДВ 5.2).
Вопрос No1 К характеристикам аккумуляторов относятся: емкость добротность полоса частот внутреннее сопротивление максимальный ток Вопрос No2 Выберите правильную форму напряжения в контрольной точке X2 на функциональной схеме выпрямителя ВБВ 24/3 – 2: Вопрос No3 Аккумуляторная батарея из 24 кислотных элементов в нормальных условиях отдала в нагрузку полную ёмкость. При этом, напряжение на ней равно ... Вольт. 48 43,2 55,2 64,8 Вопрос No4 В системе гарантированного электрос
User IT-STUDHELP : 6 октября 2023
500 руб.
Онлайн Тест 1 по дисциплине: Промышленные электроустановки (ДВ 5.2). promo
Теплотехника МГУПП 2015 Задача 2.2 Вариант 95
Определить часовой расход воздуха, теплоты и греющего пара в калорифере для установки по сушке молока (рис. 1), если: • температура холодного воздуха, подаваемого в водяной калорифер, tA и его относительная влажность φА; • температура горячего воздуха после калорифера tB; • относительная влажность воздуха после сушильной установки φС; • производительность установки по испаренной влаге П; • давление греющего пара, поступающего в калорифер, р при степени сухости х; • содержание
User Z24 : 7 января 2026
200 руб.
Теплотехника МГУПП 2015 Задача 2.2 Вариант 95
up Наверх